A self-organizing map for adaptive processing of structured data
نویسندگان
چکیده
Recent developments in the area of neural networks produced models capable of dealing with structured data. Here, we propose the first fully unsupervised model, namely an extension of traditional self-organizing maps (SOMs), for the processing of labeled directed acyclic graphs (DAGs). The extension is obtained by using the unfolding procedure adopted in recurrent and recursive neural networks, with the replicated neurons in the unfolded network comprising of a full SOM. This approach enables the discovery of similarities among objects including vectors consisting of numerical data. The capabilities of the model are analyzed in detail by utilizing a relatively large data set taken from an artificial benchmark problem involving visual patterns encoded as labeled DAGs. The experimental results demonstrate clearly that the proposed model is capable of exploiting both information conveyed in the labels attached to each node of the input DAGs and information encoded in the DAG topology.
منابع مشابه
The Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملSelf-organizing neural networks for sequence processing
This work investigates the self-organizing representation of temporal data in prototypebased neural networks. Extensions of the supervised learning vector quantization (LVQ) and the unsupervised self-organizing map (SOM) are considered in detail. The principle of Hebbian learning through prototypes yields compact data models that can be easily interpreted by similarity reasoning. In order to ob...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2003