Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics
نویسندگان
چکیده
Geckos have the extraordinary ability to prevent their sticky feet from fouling while running on dusty walls and ceilings. Understanding gecko adhesion and self-cleaning mechanisms is essential for elucidating animal behaviours and rationally designing gecko-inspired devices. Here we report a unique self-cleaning mechanism possessed by the nano-pads of gecko spatulae. The difference between the velocity-dependent particle-wall adhesion and the velocity-independent spatula-particle dynamic response leads to a robust self-cleaning capability, allowing geckos to efficiently dislodge dirt during their locomotion. Emulating this natural design, we fabricate artificial spatulae and micromanipulators that show similar effects, and that provide a new way to manipulate micro-objects. By simply tuning the pull-off velocity, our gecko-inspired micromanipulators, made of synthetic microfibers with graphene-decorated micro-pads, can easily pick up, transport, and drop-off microparticles for precise assembling. This work should open the door to the development of novel self-cleaning adhesives, smart surfaces, microelectromechanical systems, biomedical devices, and more.
منابع مشابه
Evidence for self-cleaning in gecko setae.
A tokay gecko can cling to virtually any surface and support its body mass with a single toe by using the millions of keratinous setae on its toe pads. Each seta branches into hundreds of 200-nm spatulae that make intimate contact with a variety of surface profiles. We showed previously that the combined surface area of billions of spatulae maximizes van der Waals interactions to generate large...
متن کاملDynamic self-cleaning in gecko setae via digital hyperextension.
Gecko toe pads show strong adhesion on various surfaces yet remain remarkably clean around everyday contaminants. An understanding of how geckos clean their toe pads while being in motion is essential for the elucidation of animal behaviours as well as the design of biomimetic devices with optimal performance. Here, we test the self-cleaning of geckos during locomotion. We provide, to our knowl...
متن کاملStaying sticky: contact self-cleaning of gecko-inspired adhesives.
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attach...
متن کاملRational design and nanofabrication of gecko-inspired fibrillar adhesives.
Gecko feet integrate many intriguing functions such as strong adhesion, easy detachment, and self-cleaning. Mimicking gecko toe pad structure leads to the development of new types of fibrillar adhesives useful for various applications. In this Concept article, in addition to the design of adhesive mimics by replicating gecko geometric features, we show a new trend of rational design by adding o...
متن کاملSynthesis of the Silicon Inverted Nano- Pyramid and Study of Their Self- Cleaning Behavior
In this paper, synthesis of inverted nano-pyramids on a single crystal silicon surface through a simple and cost-effective wet chemical method is surveyed. These structures were synthesized by MACE process using Cu as the assisted metal in the solution of copper nitrate, hydrogen peroxide and hydrofluoric acid for different etching times. FE-SEM images of the samples show that time is an import...
متن کامل