Self-protection by cardiac myocytes against hypoxia and hyperoxia.
نویسندگان
چکیده
Cardiac muscle must maintain a continuous balance between its energy supply and work performed. An important mechanism involved in achievement of this balance is cross talk via chemical signals between cardiac myocytes and the cardiac muscle vascular system. This has been demonstrated by incubating isolated cardiac myocytes in different concentrations of oxygen and then assaying the conditioned media for vasoactive substances on isolated aortic rings and small-resistance arteries. With increasing oxygen concentrations above 6%, cardiac myocytes produce increasing amounts of angiotensin I, which is converted to angiotensin II by the blood vessel. The angiotensin II stimulates vascular endothelial cells to secrete endothelin and increase vascular tone. Below 6% oxygen, cardiac myocytes secrete adenosine, which acts directly on vascular smooth muscle to block the effect of alpha-adrenergic agonists and reduce vascular tone. In an intact heart, the net effect of these 2 regulatory systems would be the maintenance of oxygen concentration within a narrow range at the cardiac myocytes. By acting as oxygen sensors, cardiac myocytes modulate vascular tone according to the needs of the myocytes and reduce potential problems of hypoxia and extensive formation of reactive oxygen species.
منابع مشابه
Ischemia and reperfusion-induced arrhythmias: role of hyperoxic preconditioning.
BACKGROUND Hyperoxic preconditioning is known to protect the heart against necrosis and contractile dysfunction, but protection against arrhythmias has not been well characterized. OBJECTIVE The authors hypothesized that pre-exposure to normobaric hyperoxia (H) reduces ischemia and reperfusion-induced arrhythmias in isolated rat hearts. METHODS Following 60 and 180 min of hyperoxia treatmen...
متن کاملThrombopoietin receptor agonists protect human cardiac myocytes from injury by activation of cell survival pathways.
Thrombopoietin confers immediate protection against injury caused by ischemia/reperfusion in the rat heart. Eltrombopag is a small molecule agonist of the thrombopoietin receptor, the physiologic target of thrombopoietin. However, the ability of eltrombopag and thrombopoietin to protect human cardiac myocytes against injury and the mechanisms underlying myocyte protection are not known. Human c...
متن کاملEffects of normobaric hyperoxia pretreatment on ischemia-reperfusion injury in regional ischemia model of isolated rat heart
Abstract Introduction: Resent studies have been shown beneficial effects of hyperoxia pretreatment against ischemia-reperfusion injury in different organs. The aim of the present study was to investigate early and late effects of normobaric hyperoxia (≥95% O2) pretreatment on ischemia-reperfusion injuries in isolated rat hearts. Methods: Following 60 and 180 minutes of hyperoxia, rat hearts w...
متن کاملEndothelium-derived neuregulin protects the heart against ischemic injury.
BACKGROUND Removal of cardiac endothelial cells (EC) has been shown to produce significant detrimental effects on the function of adjacent cardiac myocytes, suggesting that EC play a critical role in autocrine/paracrine regulation of the heart. Despite this important observation, the mediators of the protective function of EC remain obscure. Neuregulin (NRG, a member of the epidermal growth fac...
متن کاملHyperoxic preconditioning fails to confer additional protection against ischemia-reperfusion injury in acute diabetic rat heart
Experimental studies show that detrimental effects of ischemia-reperfusion (I/R) injury can be attenuated by hyperoxic preconditioning in normal hearts, however, there are few studies about hyperoxia effects in diseased myocardium. The present study was designed to assess the cardioprotective effects of hyperoxia pretreatment (≥ 95 % O2) in acute diabetic rat hearts. Normal and one week acute d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 85 8 شماره
صفحات -
تاریخ انتشار 1999