GHZ States, Almost-Complex Structure and Yang-Baxter Equation

نویسندگان

  • Yong Zhang
  • Mo-Lin Ge
چکیده

Recent study suggests that there are natural connections between quantum information theory and the Yang–Baxter equation. In this paper, in terms of the generalized almost-complex structure and with the help of its algebra, we define the generalized Bell matrix to yield all the GHZ states from the product base, prove it to form a unitary braid representation and present a new type of solution of the quantum Yang–Baxter equation. We also study Yang-Baxterization, Hamiltonian, projectors, diagonalization, noncommutative geometry, quantum algebra and FRT dual algebra associated with this generalized Bell matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraspecial two-Groups, generalized Yang-Baxter equations and braiding quantum gates

In this paper we describe connections among extraspecial 2-groups, unitary representations of the braid group and multi-qubit braiding quantum gates. We first construct new representations of extraspecial 2-groups. Extending the latter by the symmetric group, we construct new unitary braid representations, which are solutions to generalized Yang-Baxter equations and use them to realize new brai...

متن کامل

Gaussian (N, z)-generalized Yang-Baxter operators

We find unitary matrix solutions˜R(a) to the (multiplicative parameter-dependent) (N, z)-generalized Yang-Baxter equation that carry the standard measurement basis to m-level N-partite entangled states that generalize the 2-level bipartite entangled Bell states. This is achieved by a careful study of solutions to the Yang-Baxter equation discovered by Fateev and Zamolodchikov in 1982.

متن کامل

Algebraic Aspects of the Quantum Yang–Baxter Equation

In this paper we examine a variety of algebraic contexts in which the quantum Yang–Baxter equation arises, and derive methods for generating new solutions from given ones. The solutions we describe are encoded in objects which have a module and a comodule structure over a bialgebra. Our work here is based in part on the ideas of [DR1, DR2]. Suppose that R : M ⊗M −→ M ⊗M is a solution to the qua...

متن کامل

1 8 M ay 2 00 0 Lectures on the dynamical Yang - Baxter equations

This paper arose from a minicourse given by the first author at MIT in the Spring of 1999, when the second author extended and improved his lecture notes of this minicourse. It contains a systematic and elementary introduction to a new area of the theory of quantum groups – the theory of the classical and quantum dynamical Yang-Baxter equations. The quantum dynamical Yang-Baxter equation is a g...

متن کامل

A Cellular Braid Action and the Yang - Baxter Equation

Using a theorem of Schechtman Varchenko on integral expressions for solutions of Knizhnik Zamolodchikov equations we prove that the solutions of the Yang Baxter equation associated to complex simple Lie algebras belong to the class of generalised Magnus representations of the braid group. Hence they can be obtained from the homology of a certain cell complex, or equivalently as group homology o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information Processing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007