High Sensitive and Selective Sensing of Hydrogen Peroxide Released from Pheochromocytoma Cells Based on Pt-Au Bimetallic Nanoparticles Electrodeposited on Reduced Graphene Sheets

نویسندگان

  • Guangxia Yu
  • Weixiang Wu
  • Xiaoqi Pan
  • Qiang Zhao
  • Xiaoyun Wei
  • Qing Lu
چکیده

In this study, a high sensitive and selective hydrogen peroxide (H2O2) sensor was successfully constructed with Pt-Au bimetallic nanoparticles (Pt-Au NPs)/reduced graphene sheets (rGSs) hybrid films. Various molar ratios of Au to Pt and different electrodeposition conditions were evaluated to control the morphology and electrocatalytic activity of the Pt-Au bimetallic nanoparticles. Upon optimal conditions, wide linear ranges from 1 µM to 1.78 mM and 1.78 mM to 16.8 mM were obtained, with a detection limit as low as 0.31 µM. Besides, due to the synergetic effects of the bimetallic NPs and rGSs, the amperometric H2O2 sensor could operate at a low potential of 0 V. Under this potential, not only common anodic interferences induced from ascorbic acid, uric acid and dopamine, but also the cathodic interference induced from endogenous O2 could be effectively avoided. Furthermore, with rat pheochromocytoma cells (PC 12) as model, the proposed sensor had been successfully used in the detection of H2O2 released from the cancer cells. This method with wide linear ranges and excellent selectivity can provide a promising alternative for H2O2 monitoring in vivo in the fields of physiology, pathology and diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...

متن کامل

Electrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor

Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...

متن کامل

Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode

A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it...

متن کامل

Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation

Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015