Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling.
نویسندگان
چکیده
Suppression of soleus H-reflex amplitude in stationary legs is seen during rhythmic arm cycling. We examined the influence of various arm-cycling parameters on this interlimb reflex modulation to determine the origin of the effect. We previously showed the suppression to be graded with the frequency of arm cycling but not largely influenced by changes in peripheral input associated with crank length. Here, we more explicitly explored the contribution of afferent feedback related to arm movement on the soleus H-reflex suppression. We explored the influence of load and rate of muscle stretch by manipulating crank-load and arm-muscle vibration during arm cycling. Furthermore, internally driven ("Active") and externally driven ("Passive") arm cycling was compared. Soleus H-reflexes were evoked with tibial nerve stimulation during stationary control and rhythmic arm-cycling conditions, including: 1) six different loads; 2) with and without vibration to arm muscles; and 3) Active and Passive conditions. No significant differences were seen in the level of suppression between the different crank loads or between conditions with and without arm-muscle vibration. Furthermore, in contrast to the clear effect seen during active cycling, passive arm cycling did not significantly suppress the soleus H-reflex amplitude. Current results, in conjunction with previous findings, suggest that the afferent feedback examined in these studies is not the primary source responsible for soleus H-reflex suppression. Instead, it appears that central motor commands (supraspinal or spinal in origin) associated with frequency of arm cycling are relatively more dominant sources.
منابع مشابه
Effect of afferent feedback and central motor commands on Soleus H - 3 reflex suppression during arm cycling
7 Hundza SR, Geoff C. de Ruiter , Klimstra M and E. Paul Zehr 8 9 10 Motion, and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada 11 2 CanAssist University of Victoria, Victoria, BC, Canada 12 Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), 13 Vancouver, BC, Canada 14 Rehabilitation Neuroscience Laboratory, University of Victor...
متن کاملShort-term plasticity of spinal reflex excitability induced by rhythmic arm movement.
Rhythmic arm movement reduces Hoffmann (H)-reflex amplitudes in leg muscles by modulation of presynaptic inhibition in group Ia transmission. To date only the acute effect occurring during arm movement has been studied. We hypothesized that the excitability of soleus H-reflexes would remain suppressed beyond a period of arm cycling conditioning. Subjects used a customized arm ergometer to perfo...
متن کاملEffect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning.
During locomotor tasks such as walking, running, and swimming, the arms move rhythmically with the legs. It has been suggested that connections between the cervical and lumbosacral spinal cord may mediate some of this interlimb coordination. However, it is unclear how these interlimb pathways modulate reflex excitability during movement. We hypothesized that rhythmic arm movement would alter th...
متن کاملNeural Mechanisms Influencing Interlimb Coordination during Locomotion in Humans: Presynaptic Modulation of Forearm H-Reflexes during Leg Cycling
Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI) is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in l...
متن کاملAfter stroke bidirectional modulation of soleus stretch reflex amplitude emerges during rhythmic arm cycling
OBJECTIVES after stroke a typical presentation is exaggerated stretch reflexes (SRs) on the more affected (MA) side. The present study evaluated the contribution of presynaptic inhibition (PSI) induced by arm cycling and homosynaptic depression (HD) to the modulation of hyperreflexia at the ankle after stroke. Possible asymmetry of these effects between the MA and less affected (LA) legs was al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 108 11 شماره
صفحات -
تاریخ انتشار 2012