Detecting Distributed Denial of Service (DDoS) Attacks through Inductive Learning

نویسندگان

  • Sanguk Noh
  • Cheolho Lee
  • Kyunghee Choi
  • Gihyun Jung
چکیده

As the complexity of Internet is scaled up, it is likely for the Internet resources to be exposed to Distributed Denial of Service (DDoS) flooding attacks on TCP-based Web servers. There has been a lot of related work which focuses on analyzing the pattern of the DDoS attacks to protect users from them. However, none of these studies takes all the flags within TCP header into account, nor do they analyze relationship between the flags and the TCP packets. To analyze the features of the DDoS attacks, therefore, this paper presents a network traffic analysis mechanism which computes the ratio of the number of TCP flags to the total number of TCP packets. Based upon the calculation of TCP flag rates, we compile a pair of the TCP flag rates and the presence (or absence) of the DDoS attack into state-action rules using machine learning algorithms. We endow alarming agents with a tapestry of the compiled rules. The agents can then detect network flooding attacks against a Web server. We validate our framework with experimental results in a simulated TCP-based network setting. The experimental results show a distinctive and predictive pattern of the DDoS attacks, and our alarming agents can successfully detect various DDoS attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HF-Blocker: Detection of Distributed Denial of Service Attacks Based On Botnets

Abstract—Today, botnets have become a serious threat to enterprise networks. By creation of network of bots, they launch several attacks, distributed denial of service attacks (DDoS) on networks is a sample of such attacks. Such attacks with the occupation of system resources, have proven to be an effective method of denying network services. Botnets that launch HTTP packet flood attacks agains...

متن کامل

Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks

Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...

متن کامل

F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management

Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...

متن کامل

DiCoDefense: Distributed Collaborative Defense against DDoS Flooding attacks

Detecting Distributed Denial of Service (DDoS) flooding attacks as soon as possible before they affect the victims, identifying the sources of the attacks, and finally stopping them by blocking or rate limiting the attack traffic is the ultimate goal of current defense mechanisms. The success in detecting and responding to DDoS flooding attacks is highly dependent on the data monitored by the e...

متن کامل

An Intelligent DDoS Attack Detection System Using Packet Analysis and Support Vector Machine

Nowadays, many companies and/or governments require a secure system and/or an accurate intrusion detection system (IDS) to defend their network services and the user’s private information. In network security, developing an accurate detection system for distributed denial of service (DDoS) attacks is one of challenging tasks. DDoS attacks jam the network service of the target using multiple bot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003