The fine structure of 321 avoiding permutations

نویسنده

  • M. H. Albert
چکیده

Bivariate generating functions for various subsets of the class of permutations containing no descending sequence of length three or more are determined. The notion of absolute indecomposability of a permutation is introduced, and used in enumerating permutations which have a block structure avoiding 321, and whose blocks also have such structure (recursively). Generalizations of these results are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fine Structure of 321 Avoiding Permutations. the Fine Structure of 321 Avoiding Permutations

Bivariate generating functions for various subsets of the class of permutations containing no descending sequence of length three or more are determined. The notion of absolute indecomposability of a permutation is introduced, and used in enumerating permutations which have a block structure avoiding 321, and whose blocks also have such structure (recursively). Generalizations of these results ...

متن کامل

Inversion Formulae on Permutations Avoiding 321

We will study the inversion statistic of 321-avoiding permutations, and obtain that the number of 321-avoiding permutations on [n] with m inversions is given by

متن کامل

Inversion polynomials for 321-avoiding permutations

We prove a generalization of a conjecture of Dokos, Dwyer, Johnson, Sagan, and Selsor giving a recursion for the inversion polynomial of 321-avoiding permutations. We also answer a question they posed about finding a recursive formulas for the major index polynomial of 321-avoiding permutations. Other properties of these polynomials are investigated as well. Our tools include Dyck and 2-Motzkin...

متن کامل

On 321-Avoiding Permutations in Affine Weyl Groups

We introduce the notion of 321-avoiding permutations in the affine Weyl group W of type An−1 by considering the group as a George group (in the sense of Eriksson and Eriksson). This enables us to generalize a result of Billey, Jockusch and Stanley to show that the 321-avoiding permutations in W coincide with the set of fully commutative elements; in other words, any two reduced expressions for ...

متن کامل

1 1 Ju n 20 01 EXPLICIT ENUMERATION OF 321 , HEXAGON – AVOIDING PERMUTATIONS

The 321,hexagon–avoiding (321–hex) permutations were introduced and studied by Billey and Warrington in [4] as a class of elements of Sn whose Kazhdan– Lusztig and Poincaré polynomials and the singular loci of whose Schubert varieties have certain fairly simple and explicit descriptions. This paper provides a 7–term linear recurrence relation leading to an explicit enumeration of the 321–hex pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002