Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe
نویسندگان
چکیده
1. During the last centuries many alien species have established and spread in new regions, where some of them cause large ecological and economic problems. As one of the main explanations of the spread of alien species, the enemy-release hypothesis is widely accepted and frequently serves as justification for biological control. 2. We used a global fungus–plant host distribution data set for 140 North American plant species naturalized in Europe to test whether alien plants are generally released from foliar and floral pathogens, whether they are mainly released from pathogens that are rare in the native range, and whether geographic spread of the North American plant species in Europe is associated with release from fungal pathogens. 3. We show that the 140 North American plant species naturalized in Europe were released from 58% of their foliar and floral fungal pathogen species. However, when we also consider fungal pathogens of the native North American host range that in Europe so far have only been reported on other plant species, the estimated release is reduced to 10.3%. Moreover, in Europe North American plants have mainly escaped their rare, pathogens, of which the impact is restricted to few populations. Most importantly and directly opposing the enemy-release hypothesis, geographic spread of the alien plants in Europe was negatively associated with their release from fungal pathogens. 4. Synthesis. North American plants may have escaped particular fungal species that control them in their native range, but based on total loads of fungal species, release from foliar and floral fungal pathogens does not explain the geographic spread of North American plant species in Europe. To test whether enemy release is the major driver of plant invasiveness, we urgently require more studies comparing release of invasive and non-invasive alien species from enemies of different guilds, and studies that assess the actual impact of the enemies.
منابع مشابه
Global trade will accelerate plant invasions in emerging economies under climate change.
Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled ...
متن کاملChemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae).
We identified volatiles from the floral headspace of Yucca filamentosa using gas chromatography and mass spectrometry and analyzed floral scent composition and variation among populations pollinated by different yucca moth species. Twenty-one scent compounds were repeatedly identified and most could be categorized into two major classes: (1) homoterpenes derived from the sesquiterpene alcohol n...
متن کاملThe Effects of Habitat Fragmentation and Connectivity on Plant Disease
JOHNSON, BRENDA LYNN. The Effects of Habitat Fragmentation and Connectivity on Plant Disease. (Under the direction of Nick M. Haddad.) Within a large-scale habitat corridor experiment, I performed both experimental and observational studies to determine the effects of habitat fragmentation, habitat edge, and patch connectivity on the movement and incidence of fungal plant diseases. Increased sp...
متن کاملPhylogenetics of a Fungal Invasion: Origins and Widespread Dispersal of White-Nose Syndrome
Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous ...
متن کاملEdge effects, not connectivity, determine the incidence and development of a foliar fungal plant disease.
Using a model plant-pathogen system in a large-scale habitat corridor experiment, we found that corridors do not facilitate the movement of wind-dispersed plant pathogens, that connectivity of patches does not enhance levels of foliar fungal plant disease, and that edge effects are the key drivers of plant disease dynamics. Increased spread of infectious disease is often cited as a potential ne...
متن کامل