Regulation of Alpha-herpesvirus Reactivation from Latency by Stress
نویسندگان
چکیده
Bovine herpesvirus 1 (BHV-1) establishes a lifelong latent infection in sensory neurons following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Within minutes, corticosteroids activate the glucocorticoid receptor and transcription of promoters containing a glucocorticoid receptor element. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency. Cellular transcription factors are induced by dexamethasone in trigeminal ganglionic neurons within 1.5 h after dexamethasone treatment, suggesting they promote viral gene expression during the early phases of reactivation from latency, which we operationally defined as the escape from latency. Within 90 min after latently infected calves are treated with dexamethasone, two BHV-1 regulatory proteins, BHV-1infected cell protein 0 (bICP0) and viral protein 16 (VP16), are expressed in the same neuron. Two other late proteins, glycoprotein C and D, were not detected until 6 h after dexamethasone treatment and were detected in only a few neurons. These studies provide evidence that VP16 and the promiscuous viral trans-activator (bICP0) are expressed during the escape from latency, suggesting they promote the production of infectious virus in a small subset of latently infected neurons. We now provide evidence that neurons expressing the glucocorticoid receptor expressed bICP0 or VP16 at 1.5 h after dexamethasone treatment. VP16 and bICP0 can also be detected at 22 and 33 min after dexamethasone (DEX) treatment of latently infected calves. However, we were unable to discern whether VP16 or bICP0 was expressed at early times after reactivation. VP16+ neurons consistently express the glucocorticoid receptor suggesting corticosteroidmediated activation of its receptor rapidly stimulates reactivation from latency.
منابع مشابه
Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that t...
متن کاملA protein encoded by the bovine herpesvirus 1 latency-related gene interacts with specific cellular regulatory proteins, including CCAAT enhancer binding protein alpha.
Following acute infection, bovine herpesvirus 1 establishes latency in sensory neurons of trigeminal ganglia (TG). Reactivation from latency occurs periodically, resulting in the shedding of infectious virus. The latency-related (LR) RNA is abundantly expressed in TG of latently infected calves, and the expression of LR proteins is necessary for dexamethasone-induced reactivation from latency. ...
متن کاملPsychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections.
Recurrent HSV-1 ocular disease results from reactivation of latent virus in trigeminal ganglia, often following immunosuppression or exposure to a variety of psychological or physical stressors. HSV-specific CD8+ T cells can block HSV-1 reactivation from latency in ex vivo trigeminal ganglia cultures through production of IFN-gamma. In this study, we establish that either CD8+ T cell depletion ...
متن کاملReactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update
The life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for...
متن کاملAlpha/beta interferons regulate murine gammaherpesvirus latent gene expression and reactivation from latency.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-typ...
متن کامل