Vitamin K1 enhances sorafenib-induced growth inhibition and apoptosis of human malignant glioma cells by blocking the Raf/MEK/ERK pathway

نویسندگان

  • Wei Du
  • Jing-ru Zhou
  • Dong-liang Wang
  • Kai Gong
  • Qing-jun Zhang
چکیده

BACKGROUND The combined effects of anticancer drugs with nutritional factors against tumor cells have been reported previously. This study characterized the efficacy and possible mechanisms of the combination of sorafenib and vitamin K1 (VK1) on glioma cell lines. METHODS We examined the effects of sorafenib, VK1 or their combination on the proliferation and apoptosis of human malignant glioma cell lines (BT325 and U251) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry and 4',6-diamidino-2-phenylindole (DAPI) assay. The signaling pathway changes were detected by western blotting. RESULTS Sorafenib, as a single agent, showed antitumor activity in a dose-dependent manner in glioma cells, but the effects were more pronounced when used in combination with VK1 treatment. Sorafenib in combination with VK1 treatment produced marked potentiation of growth inhibition and apoptosis, and reduced expression of phospho-mitogen-activated protein kinase kinase (MEK) and phospho-extracellular signal-regulated kinase (ERK). Furthermore, the expression levels of antiapoptotic proteins Bcl-2 and Mcl-1 were significantly reduced. CONCLUSIONS Our findings indicated that VK1 enhanced the cytotoxicity effect of sorafenib through inhibiting the Raf/MEK/ERK signaling pathway in glioma cells, and suggested that sorafenib in combination with VK1 maybe a new therapeutic option for patients with gliomas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5.

Angiogenesis and signaling through the RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade have been reported to play important roles in the development of hepatocellular carcinomas (HCC). Sorafenib (BAY 43-9006, Nexavar) is a multikinase inhibitor with activity against Raf kinase and several receptor tyrosine kinases, including vascular endothelia...

متن کامل

Norcantharidin induces growth inhibition and apoptosis of glioma cells by blocking the Raf/MEK/ERK pathway

BACKGROUND Malignant gliomas represent the most common primary brain tumors. The prognosis of patients with malignant gliomas is poor in spite of current intensive therapy and novel therapeutic modalities are needed. Here we report that norcantharidin is effective in growth inhibition of glioma cell lines in vitro. METHODS Glioma cell lines (U87 and C6) were treated with norcantharidin. The e...

متن کامل

Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors

Sorafenib is a RAF inhibitor approved for several cancers, including hepatocellular carcinoma (HCC). Inhibition of RAF kinases can induce a dose-dependent "paradoxical" upregulation of the downstream mitogen-activated protein kinase (MAPK) pathway in cancer cells. It is unknown whether "paradoxical" ERK activation occurs after sorafenib therapy in HCC, and if so, if it impacts the therapeutic e...

متن کامل

Hepatocellular Carcinoma Model PLC/PRF/5 Tumor Angiogenesis, and Induces Tumor Cell Apoptosis in Sorafenib Blocks the RAF/MEK/ERK Pathway, Inhibits

Angiogenesis and signaling through the RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade have been reported to play important roles in the development of hepatocellular carcinomas (HCC). Sorafenib (BAY 43-9006, Nexavar) is a multikinase inhibitor with activity against Raf kinase and several receptor tyrosine kinases, including vascular endothelia...

متن کامل

FOXD3 is a tumor suppressor of colon cancer by inhibiting EGFR-Ras-Raf-MEK-ERK signal pathway

Forkhead box D3 (FOXD3), as a transcriptional repressor, is well known to be involved in the regulation of development. Although FoxD3 is associated with several cancers, its role in colon cancer and the underlying mechanism are still unclear. Here, we first showed that FOXD3 knockdown dramatically increased the proliferation of human colon cancer cells, enhanced cell invasive ability and inhib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012