HE Plots for Multivariate Linear Models

نویسنده

  • Michael Friendly
چکیده

Multivariate analysis of variance (MANOVA) extends the ideas and methods of univariate ANOVA in simple and straightforward ways. But the familiar graphical methods typically used for univariate ANOVA are inadequate for showing how measures in a multivariate response vary with each other, and how their means vary with explanatory factors. Similarly, the graphical methods commonly used in multiple regression are not widely available or used in multivariate multiple regression (MMRA). We describe a variety of graphical methods for multiple-response (MANOVA and MMRA) data aimed at understanding what is being tested in a multivariate test, and how factor/predictor effects are expressed across multiple response measures. In particular, we describe and illustrate: (a) Data ellipses and biplots for multivariate data; (b) HE plots, showing the hypothesis and error covariance matrices for a given pair of responses, and a given effect; (c) HE plot matrices, showing all pairwise HE plots; and (d) reduced-rank analogs of HE plots, showing all observations, group means, and their relations to the response variables. All of these methods are implemented in a collection of easily used SAS macro programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Ellipses, HE Plots and Reduced-Rank Displays for Multivariate Linear Models: SAS Software and Examples

This paper describes graphical methods for multiple-response data within the framework of the multivariate linear model (MLM), aimed at understanding what is being tested in a multivariate test, and how factor/predictor effects are expressed across multiple response measures. In particular, we describe and illustrate a collection of SAS macro programs for: (a) Data ellipses and low-rank biplots...

متن کامل

HE Plots for Repeated Measures Designs

Hypothesis error (HE) plots, introduced in Friendly (2007), provide graphical methods to visualize hypothesis tests in multivariate linear models, by displaying hypothesis and error covariation as ellipsoids and providing visual representations of effect size and significance. These methods are implemented in the heplots for R (Fox, Friendly, and Monette 2009a) and SAS (Friendly 2006), and appl...

متن کامل

Visualizing hypothesis tests in multivariate linear models: the heplots package for R

Abstract Hypothesis-error (or “HE”) plots, introduced by Friendly (J Stat Softw 17(6):1–42, 2006a; J Comput Graph Stat 16:421–444, 2006b), permit the visualization of hypothesis tests in multivariate linear models by representing hypothesis and error matrices of sums of squares and cross-products as ellipses. This paper describes the implementation of these methods in the heplots package for R,...

متن کامل

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

Linear and Nonlinear Multivariate Classification of Iranian Bottled Mineral Waters According to Their Elemental Content Determined by ICP-OES

The combinations of inductively coupled plasma-optical emission spectrometry (ICP-OES) and three classification algorithms, i.e., partial least squares discriminant analysis (PLS-DA), least squares support vector machine (LS-SVM) and soft independent modeling of class analogies (SIMCA), for discriminating different brands of Iranian bottled mineral waters, were explored. ICP-OES was used for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007