Double Cross Biproduct and Bicycle Bicrossproduct Lie Bialgebras

نویسنده

  • Tao Zhang
چکیده

We construct double cross biproduct and bicycle bicrossproduct Lie bialgebras from braided Lie bialgebras. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double, and Masuoka’s cross product Lie bialgebras. 2000 Mathematics Subject Classification: 17B62, 18D35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Bicrossproduct Lie Bialgebras

We construct double biproduct, bicrossproduct, double crossproduct, double bicrossproduct Lie bialgebras from braided Lie bialgebras. The relations between them are found. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double of Lie bialgebras, and Masuoka’s cross product Lie bialgebras. Some properties of double biproduct Lie bialgebras are given. In the a...

متن کامل

Braided Lie Bialgebras

We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of ...

متن کامل

Weak Projections onto a Braided Hopf Algebra

We show that, under some mild conditions, a bialgebra in an abelian and coabelian braided monoidal category has a weak projection onto a formally smooth (as a coalgebra) sub-bialgebra with antipode; see Theorem 1.12. In the second part of the paper we prove that bialgebras with weak projections are cross product bialgebras; see Theorem 2.12. In the particular case when the bialgebra A is cocomm...

متن کامل

Lie Bialgebras of Complex Type and Associated Poisson Lie Groups

In this work we study a particular class of Lie bialgebras arising from Hermitian structures on Lie algebras such that the metric is ad-invariant. We will refer to them as Lie bialgebras of complex type. These give rise to Poisson Lie groups G whose corresponding duals G∗ are complex Lie groups. We also prove that a Hermitian structure on g with ad-invariant metric induces a structure of the sa...

متن کامل

Drinfel’d Doubles and Ehresmann Doubles for Lie Algebroids and Lie Bialgebroids

We show that the Manin triple characterization of Lie bialgebras in terms of the Drinfel’d double may be extended to arbitrary Poisson manifolds and indeed Lie bialgebroids by using double cotangent bundles, rather than the direct sum structures (Courant algebroids) utilized for similar purposes by Liu, Weinstein and Xu. This is achieved in terms of an abstract notion of double Lie algebroid (w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009