Circulant and Toeplitz matrices in compressed sensing

نویسنده

  • Holger Rauhut
چکیده

Compressed sensing seeks to recover a sparse vector from a small number of linear and non-adaptive measurements. While most work so far focuses on Gaussian or Bernoulli random measurements we investigate the use of partial random circulant and Toeplitz matrices in connection with recovery by `1-minization. In contrast to recent work in this direction we allow the use of an arbitrary subset of rows of a circulant and Toeplitz matrix. Our recovery result predicts that the necessary number of measurements to ensure sparse reconstruction by `1-minimization with random partial circulant or Toeplitz matrices scales linearly in the sparsity up to a log-factor in the ambient dimension. This represents a significant improvement over previous recovery results for such matrices. As a main tool for the proofs we use a new version of the non-commutative Khintchine inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Toeplitz-Structured Compressed Sensing Matrices

Abstract How to construct a suitable measurement matrix is still an open question in compressed sensing. A significant part of the recent work is that the measurement matrices are not completely random on the entries but exhibit considerable structure. In this paper, we proved that the symmetric Toeplitz matrix and its transforms can be used as measurement matrix and recovery signal with high p...

متن کامل

Improved Compressed Sensing Matrixes for Insulator Leakage Current Data Compressing

Insulator fault may lead to the accident of power network, thus the on-line monitoring of insulator is very significant. Low rates wireless network is used for data transmission of leakage current. Determination of the measurement matrix is the significant step for realizing the compressed sensing theory. This article comes up with new sparse matrices which can be used as compressed sensing mat...

متن کامل

Learning Circulant Sensing Kernels

In signal acquisition, Toeplitz and circulant matrices are widely used as sensing operators. They correspond to discrete convolutions and are easily or even naturally realized in various applications. For compressive sensing, recent work has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory, by computer simulations, as well as through physical optical exp...

متن کامل

Recovery guarantees for multifrequency chirp waveforms in compressed radar sensing

Radar imaging systems transmit modulated wideband waveform to achieve high range resolution resulting in high sampling rates at the receiver proportional to the bandwidth of the transmit waveform. Analog processing techniques can be used on receive to reduce the number of measurements to N , the number of potential delay bins. If the scene interrogated by the radar is assumed to be sparse consi...

متن کامل

Toeplitz Block Matrices in Compressed Sensing

Recent work in compressed sensing theory shows that n×N independent and identically distributed (IID) sensing matrices whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if n N . Motivated by signal processing applications, random filtering with Toeplitz sensing matrices whose elements are drawn fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0902.4394  شماره 

صفحات  -

تاریخ انتشار 2009