Singularity Behavior of the Mean Curvature Flow
نویسنده
چکیده
It was proved that a blow-up solution to the mean curvature flow with positive mean curvature is an ancient convex solution, that is a convex solution which exists for time t from −∞. In this paper we study the geometry of ancient convex solutions. Our main results are contained in Theorems 1-3 below. Theorem 1 asserts that after normalization, the solution converges to a sphere or cylinder as t → −∞. Theorem 2 shows that in any dimension n ≥ 3, there exists ancient convex solutions which are not rotationally symmetric. But Theorem 3 shows that a translating convex solution in R3 must be rotationally symmetric if it is a blow-up solution. These results are contained in paper [W].
منابع مشابه
Critical behavior of collapsing surfaces
We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling the one of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial data reveals the existence of a critical initial surface that develops a degenerate neckpinch. Th...
متن کاملNeckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow
We study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are C3-close to round, but without assuming rotational symmetry or positive mean curvature, we show that mcf solutions become singular in finite time by forming neckpinches, and we obtain detailed asymptotics of that singularity formation. Our results show in a precise way that mcf solutions...
متن کاملA numerical scheme
Many moving boundary problems that are driven in some way by the curvature of the free boundary are gradient flows for the area of the moving interface. Examples are the Mullins-Sekerka flow, the Hele-Shaw flow, flow by mean curvature, and flow by averaged mean curvature. The gradient flow structure suggests an implicit finite differences approach to compute numerical solutions. The proposed nu...
متن کاملSingular Perturbations of Mean Curvature Flow
We introduce a regularization method for mean curvature flow of a submanifold of arbitrary codimension in the Euclidean space, through higher order equations. We prove that the regularized problems converge to the mean curvature flow for all times before the first singularity.
متن کاملSingularity of Mean Curvature Flow of Lagrangian Submanifolds
In this article we study the tangent cones at first time singularity of a Lagrangian mean curvature flow. If the initial compact submanifold Σ0 is Lagrangian and almost calibrated by ReΩ in a Calabi-Yau n-fold (M,Ω), and T > 0 is the first blow-up time of the mean curvature flow, then the tangent cone of the mean curvature flow at a singular point (X0, T ) is a stationary Lagrangian integer mul...
متن کاملMean Curvature Flow of Surfaces in Einstein Four-Manifolds
Let Σ be a compact oriented surface immersed in a four dimensional Kähler-Einstein manifold (M,ω). We consider the evolution of Σ in the direction of its mean curvature vector. It is proved that being symplectic is preserved along the flow and the flow does not develop type I singularity. When M has two parallel Kähler forms ω and ω that determine different orientations and Σ is symplectic with...
متن کامل