Values of the Legendre chi and Hurwitz zeta functions at rational arguments

نویسندگان

  • Djurdje Cvijovic
  • Jacek Klinowski
چکیده

We show that the Hurwitz zeta function, ζ(ν, a), and the Legendre chi function, χν(z), defined by ζ(ν, a) = ∞ ∑ k=0 1 (k + a)ν , 0 < a ≤ 1, Re ν > 1, and χν(z) = ∞ ∑ k=0 z2k+1 (2k + 1)ν , |z| ≤ 1, Re ν > 1 with ν = 2, 3, 4, . . . , respectively, form a discrete Fourier transform pair. Many formulae involving the values of these functions at rational arguments, most of them unknown, are obtained as a corollary to this result. Among them is the further simplification of the summation formulae from our earlier work on closed form summation of some trigonometric series for rational arguments. Also, these transform relations make it likely that other results can be easily recovered and unified in a more general context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another discrete Fourier transform pairs associated with the Lipschitz-Lerch zeta function

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Discrete Fourier transform Alternating zeta functions Hurwitz–Lerch zeta function Lipschitz–Lerch zeta function Le...

متن کامل

Closed-form formulae for the derivatives of trigonometric functions at rational multiples of pi

Keywords: Trigonometric functions Hurwitz zeta function Legendre chi function Lerch zeta function Bernoulli polynomials Euler polynomials a b s t r a c t In this sequel to our recent note [D. Cvijović, Values of the derivatives of the cotangent at rational multiples of π, Appl. Math. Lett. it is shown, in a unified manner, by making use of some basic properties of certain special functions, suc...

متن کامل

Some discrete Fourier transform pairs associated with the Lipschitz-Lerch Zeta function

Keywords: Hurwitz–Lerch Zeta function Lipschitz–Lerch Zeta function Lerch Zeta function Hurwitz Zeta function Riemann Zeta function Legendre chi function Bernoulli polynomials Bernoulli numbers Discrete Fourier transform a b s t r a c t It is shown that there exists a companion formula to Srivastava's formula for the Lipschitz–Lerch Zeta function [see H.M. Srivastava, Some formulas for the Bern...

متن کامل

Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function

Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.

متن کامل

On representations and differences of Stieltjes coefficients, and other relations

The Stieltjes coefficients γk(a) arise in the expansion of the Hurwitz zeta function ζ(s, a) about its single simple pole at s = 1 and are of fundamental and long-standing importance in analytic number theory and other disciplines. We present an array of exact results for the Stieltjes coefficients, including series representations and summatory relations. Other integral representations provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999