Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty

نویسندگان

  • Takafumi Kanamori
  • Akiko Takeda
چکیده

Uncertain programs have been developed to deal with optimization problems including inexact data, i.e., uncertainty. A deterministic approach called robust optimization is commonly applied to solve these problems. Recently, Calafiore and Campi have proposed a randomized approach based on sampling of constraints, where the number of samples is determined so that only small portion of original constraints is violated at the randomized solution. Our main concern is not only the probability of violation, but also the degree of violation i.e., the worst-case violation. We derive an upper bound of the worst-case violation for the sampled convex programs and consider the relation between the probability of violation and worst-case violation. The probability of violation and the degree of violation are simultaneously bounded by small values, when the number of random samples is sufficiently large. Our method is applicable to not only a bounded uncertainty set but also an unbounded one such as Gaussian uncertain variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization under uncertainty with applications to design of truss structures

Many real-world engineering design problems are naturally cast in the form of optimization programs with uncertainty-contaminated data. In this context, a reliable design must be able to cope in some way with the presence of uncertainty. In this paper, we consider two standard philosophies for finding optimal solutions for uncertain convex optimization problems. In the first approach, classical...

متن کامل

On the Expected Probability of Constraint Violation in Sampled Convex Programs

In this note, we derive an exact expression for the expected probability V of constraint violation in a sampled convex program (see Calafiore and Campi in Math. Program. 102(1):25–46, 2005; IEEE Trans. Autom. Control 51(5):742–753, 2006 for definitions and an introduction to this topic): V = expected number of support constraints 1 + number of constraints . This result (Theorem 2.1) is obtained...

متن کامل

On the Sample Size of Random Convex Programs with Structured Dependence on the Uncertainty

Many control design problems subject to uncertainty can be cast as chance constrained optimization programs. The Scenario Approach provides an intuitive way to address these problems by replacing the chance constraint with a finite number of sampled constraints (scenarios). The sample size critically depends on the so-called Helly’s dimension, which is always upper bounded by the number of deci...

متن کامل

Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribu...

متن کامل

Optimal input design for robust H2 deconvolution filtering

Deconvolution filtering where the system and noise dynamics are obtained by parametric system identification is considered. Consistent with standard identification methods, ellipsoidal uncertainty in the estimated parameters is considered. Three problems are considered: 1) Computation of the worst case H2 performance of a given deconvolution filter in this uncertainty set. 2) Design of a filter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2012