Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity.

نویسندگان

  • Sihem Boudina
  • Sandra Sena
  • Brian T O'Neill
  • Prakash Tathireddy
  • Martin E Young
  • E Dale Abel
چکیده

BACKGROUND Obesity is a risk factor for cardiovascular disease and is strongly associated with insulin resistance and type 2 diabetes. Recent studies in obese humans and animals demonstrated increased myocardial oxygen consumption (MVO2) and reduced cardiac efficiency (CE); however, the underlying mechanisms remain unclear. The present study was performed to determine whether mitochondrial dysfunction and uncoupling are responsible for reduced cardiac performance and efficiency in ob/ob mice. METHODS AND RESULTS Cardiac function, MVO2, mitochondrial respiration, and ATP synthesis were measured in 9-week-old ob/ob and control mouse hearts. Contractile function and MVO2 in glucose-perfused ob/ob hearts were similar to controls under basal conditions but were reduced under high workload. Perfusion of ob/ob hearts with glucose and palmitate increased MVO2 and reduced CE by 23% under basal conditions, and CE remained impaired at high workload. In glucose-perfused ob/ob hearts, mitochondrial state 3 respirations were reduced but ATP/O ratios were unchanged. In contrast, state 3 respiration rates were similar in ob/ob and control mitochondria from hearts perfused with palmitate and glucose, but ATP synthesis rates and ATP/O ratios were significantly reduced in ob/ob, which suggests increased mitochondrial uncoupling. Pyruvate dehydrogenase activity and protein levels of complexes I, III, and V were reduced in obese mice. CONCLUSIONS These data indicate that reduced mitochondrial oxidative capacity may contribute to cardiac dysfunction in ob/ob mice. Moreover, fatty acid but not glucose-induced mitochondrial uncoupling reduces CE in obese mice by limiting ATP production and increasing MVO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins.

OBJECTIVE In obesity and diabetes, myocardial fatty acid utilization and myocardial oxygen consumption (MVo(2)) are increased, and cardiac efficiency is reduced. Mitochondrial uncoupling has been proposed to contribute to these metabolic abnormalities but has not been directly demonstrated. RESEARCH DESIGN AND METHODS Oxygen consumption and cardiac function were determined in db/db hearts per...

متن کامل

Giant and electrically silent right atrium.

hemodynamics to detect subclinical myocardial disease in type 2 diabetes mellitus. Am J Cardiol 2011;107:615–21. 22. Boudina S, Sena S, O’Neil BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 2005;112:2686–95. 23. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. In...

متن کامل

Acute Stimulation of White Adipocyte Respiration by PKA-Induced Lipolysis

OBJECTIVE We examined the effect of β-adrenergic receptor (βAR) activation and cAMP-elevating agents on respiration and mitochondrial uncoupling in human adipocytes and probed the underlying molecular mechanisms. RESEARCH DESIGN AND METHODS Oxygen consumption rate (OCR, aerobic respiration) and extracellular acidification rate (ECAR, anaerobic respiration) were examined in response to isoprot...

متن کامل

Mitochondrial uncoupling and lipid metabolism in adipocytes.

Metabolism of white adipose tissue is involved in the control of body fat content. In vitro experiments indicated a dependence of lipogenesis on mitochondrial ATP production, as well as a reciprocal link between hormonal effects on metabolism and energetics of adipocytes. Therefore, mitochondrial uncoupling in adipocytes that results in stimulation of energy dissipation and depression of ATP sy...

متن کامل

Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart.

BACKGROUND Diabetes-associated cardiac dysfunction is associated with mitochondrial dysfunction and oxidative stress, which may contribute to left ventricular dysfunction. The contribution of altered myocardial insulin action, independent of associated changes in systemic metabolism, is incompletely understood. The present study tested the hypothesis that perinatal loss of insulin signaling in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 112 17  شماره 

صفحات  -

تاریخ انتشار 2005