Bayesian Networks-Based Interval Training Guidance System for Cancer Rehabilitation
نویسندگان
چکیده
The number of cancer patients who live more than 5 years after surgery exceeds 53.9% over the period of 1974 and 1990; Treatments for cancer patients are important during the recovery period, as physical pain and cancer fatigue affect cancer patients’ psychological and social functions. Researchers have shown that interval training improves the physical performance in terms of fatigue level, cardiovascular build-up, and hemoglobin concentration, the feelings of control, independence, self-esteem, and social relationship during cancer rehabilitation and chemotherapy periods. The lack of proper individual motivation levels and the difficulty in following given interval training protocols results in patients stopping interval training sessions before reaching proper exhaustion levels. In this work, we use behavioral cueing using music and performance feedback, combined with a social network interface, to provide motivation during interval training exercise sessions. We have developed an application program on the popular lightweight iPhone platform, embedded with several leveraged sensors. By measuring the exercise accuracy of the user through sensor readings, specifically accelerometers embedded in the iPhone, we are able to play suitable songs to match the user’s workout plan. A hybrid of a content-based, context-aware, and collaborative filtering methods using Bayesian networks incorporates the user’s music preferences and the exercise speed that will enhance performance. Additionally, exercise information such as the amount of calorie burned, exercise time, and the exercise accuracy, etc. are sent to the user’s social network group by analyzing contents of the web database and contact lists in the user’s iPhone. Keywords-component; exercise guidance system, interval training, music recommendation, social networks, rehabilitation
منابع مشابه
The modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملClinical and cost-effectiveness of home-based cardiac rehabilitation compared to conventional, centre-based cardiac rehabilitation: Results of the FIT@Home study
Aim Although cardiac rehabilitation improves physical fitness after a cardiac event, many eligible patients do not participate in cardiac rehabilitation and the beneficial effects of cardiac rehabilitation are often not maintained over time. Home-based training with telemonitoring guidance could improve participation rates and enhance long-term effectiveness. Methods and results We randomised 9...
متن کاملUser-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کامل