The Symmetric Group Action on Rank-selected Posets of Injective Words
نویسنده
چکیده
The symmetric group Sn acts naturally on the poset of injective words over the alphabet {1, 2, . . . , n}. The induced representation on the homology of this poset has been computed by Reiner and Webb. We generalize their result by computing the representation of Sn on the homology of all rank-selected subposets, in the sense of Stanley. A further generalization to the poset of r-colored injective words is given.
منابع مشابه
Order dense injectivity of $S$-posets
In this paper, the notion of injectivity with respect to order dense embeddings in the category of $S$-posets, posets with a monotone action of a pomonoid $S$ on them, is studied. We give a criterion, like the Baer condition for injectivity of modules, or Skornjakov criterion for injectivity of $S$-sets, for the order dense injectivity. Also, we consider such injectivit...
متن کاملThe symmetric monoidal closed category of cpo $M$-sets
In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.
متن کاملVarious kinds of regular injectivity for $S$-posets
In this paper some properties of weak regular injectivity for $S$-posets, where $S$ is a pomonoid, are studied. The behaviour of different kinds of weak regular injectivity with products, coproducts and direct sums is considered. Also, some characterizations of pomonoids over which all $S$-posets are of some kind of weakly regular injective are obtained. Further, we giv...
متن کاملPosets of Finite Functions
The symmetric group S(n) is partially ordered by Bruhat order. This order is extended by L. Renner to the set of partial injective functions of {1, 2, . . . , n} (see, Linear Algebraic Monoids, Springer, 2005). This poset is investigated by M. Fortin in his paper The MacNeille Completion of the Poset of Partial Injective Functions [Electron. J. Combin., 15, R62, 2008]. In this paper we show tha...
متن کاملA characterization of a pomonoid $S$ all of its cyclic $S$-posets are regular injective
This work is devoted to give a charcaterization of a pomonoid $S$ such that all cyclic $S$-posets are regular injective.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Order
دوره 35 شماره
صفحات -
تاریخ انتشار 2018