The Symmetric Group Action on Rank-selected Posets of Injective Words

نویسنده

  • Christos A. Athanasiadis
چکیده

The symmetric group Sn acts naturally on the poset of injective words over the alphabet {1, 2, . . . , n}. The induced representation on the homology of this poset has been computed by Reiner and Webb. We generalize their result by computing the representation of Sn on the homology of all rank-selected subposets, in the sense of Stanley. A further generalization to the poset of r-colored injective words is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Order dense injectivity of $S$-posets

‎‎‎In this paper‎, ‎the‎ notion of injectivity with respect to order dense embeddings in ‎‎the category of $S$-posets‎, ‎posets with a monotone action of a‎ pomonoid $S$ on them‎, ‎is studied‎. ‎We give a criterion‎, ‎like the Baer condition for injectivity of modules‎, ‎or Skornjakov criterion for injectivity of $S$-sets‎, ‎for the order dense injectivity‎. ‎Also‎, ‎we consider such injectivit...

متن کامل

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

Various kinds of regular injectivity for $S$-posets

‎In this paper some properties of weak regular injectivity for $S$-posets‎, ‎where $S$ is a pomonoid‎, ‎are studied‎. ‎The behaviour‎ ‎of different kinds of weak regular injectivity with products‎, ‎coproducts and direct sums is considered‎. ‎Also‎, ‎some‎ ‎characterizations of pomonoids over which all $S$-posets are of‎ ‎some kind of weakly regular injective are obtained‎. ‎Further‎, ‎we‎ ‎giv...

متن کامل

Posets of Finite Functions

The symmetric group S(n) is partially ordered by Bruhat order. This order is extended by L. Renner to the set of partial injective functions of {1, 2, . . . , n} (see, Linear Algebraic Monoids, Springer, 2005). This poset is investigated by M. Fortin in his paper The MacNeille Completion of the Poset of Partial Injective Functions [Electron. J. Combin., 15, R62, 2008]. In this paper we show tha...

متن کامل

A characterization of a pomonoid $S$ all of its cyclic $S$-posets are regular injective

This work is devoted to give a charcaterization of a pomonoid $S$ such that all cyclic $S$-posets are regular injective.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2018