An amphitropic cAMP-binding protein in yeast mitochondria. 1. Synergistic control of the intramitochondrial location by calcium and phospholipid.
نویسندگان
چکیده
A cAMP-binding protein is found to be integrated into the inner mitochondrial membrane of the yeast Saccharomyces cerevisiae under normal conditions. It resists solubilization by high salt and chaotropic agents. The protein is, however, converted to a soluble form which then resides in the intermembrane space, when isolated mitochondria are incubated with low concentrations of calcium. Phospholipids or diacylglycerol (or analogues) dramatically increases the efficiency of receptor release from the inner membrane, whereas these compounds alone are ineffective. Also, cAMP does not effect or enhance liberation from the membrane of the cAMP-binding protein. Photoaffinity labeling with 8-N3-[32P]cAMP followed by mitochondrial subfractionation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis does not reveal differences in the apparent molecular weight between the membrane-bound and the soluble form of the cAMP receptor. The two forms differ, however, in their partitioning behavior in Triton X-114 as well as in their protease resistance, indicating that the release from the membrane is accompanied by a change in lipophilicity and conformation of the receptor protein. Evidence is presented that a change of the intramitochondrial location of the yeast cAMP-binding protein also occurs in vivo and leads to the activation of a mitochondrial cAMP-dependent protein kinase. The cAMP-binding protein is the first example of a mitochondrial protein with amphitropic character; i.e., it has the property to occur in two different locations, as a membrane-embedded and a soluble form.
منابع مشابه
An amphitropic cAMP-binding protein in yeast mitochondria. 2. Phospholipid nature of the membrane anchor.
We describe the first example of a mitochondrial protein with a covalently attached phosphatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملTHE CALCIUM BINDING SITES OF THE BAKERS' YEAST TRANSKETOLASE
The calcium binding sites of Bakers' Yeast Transketolase (TK) was elucidated by estimating the pKa values of the functional groups that bind to calcium. These pKa's were found to be 6.25 and 7.2 relating to the pKa's of the two immidazol moieties of histidine residues on the enzyme. The rate of the binding of calcium to the enzyme was obtained separately as a function of pH. Maximum values ...
متن کاملSerum Factors Induced the Nuclear Location of Annexin V in the Human Osteosarcoma Cell Line (MG-63)
Calcium-binding proteins play essential roles in the cell. One important class of calcium-binding proteins is the annexin family. This is a family of 13 proteins, which binds to phospholipids in a calcium-dependent manner. Osteosarcoma cell line (MG-63) is a transformed cell that has many characteristics of the differentiated cell, such as a considerable serum dependency in its growth rate. Usi...
متن کاملCyclic AMP-induced p53 Destabilization is Independent of CREB in pre-B Acute Lymphoblastic Leukemia Cells
Elevated cAMP levels in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells attenuate the doxorubicin-induced p53 accumulation and protect cells against apoptosis. cAMP responsive element binding protein (CREB) is a cAMP-stimulated transcription factor that regulates genes whose deregulated expression cooperatein oncogenesis. In the present study, we investigated the role of CREB on i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 28 26 شماره
صفحات -
تاریخ انتشار 1989