Mouse satellite DNA, centromere structure, and sister chromatid pairing
نویسندگان
چکیده
The experiments described were directed toward understanding relationships between mouse satellite DNA, sister chromatid pairing, and centromere function. Electron microscopy of a large mouse L929 marker chromosome shows that each of its multiple constrictions is coincident with a site of sister chromatid contact and the presence of mouse satellite DNA. However, only one of these sites, the central one, possesses kinetochores. This observation suggests either that satellite DNA alone is not sufficient for kinetochore formation or that when one kinetochore forms, other potential sites are suppressed. In the second set of experiments, we show that highly extended chromosomes from Hoechst 33258-treated cells (Hilwig, I., and A. Gropp, 1973, Exp. Cell Res., 81:474-477) lack kinetochores. Kinetochores are not seen in Miller spreads of these chromosomes, and at least one kinetochore antigen is not associated with these chromosomes when they were subjected to immunofluorescent analysis using anti-kinetochore scleroderma serum. These data suggest that kinetochore formation at centromeric heterochromatin may require a higher order chromatin structure which is altered by Hoechst binding. Finally, when metaphase chromosomes are subjected to digestion by restriction enzymes that degrade the bulk of mouse satellite DNA, contact between sister chromatids appears to be disrupted. Electron microscopy of digested chromosomes shows that there is a significant loss of heterochromatin between the sister chromatids at paired sites. In addition, fluorescence microscopy using anti-kinetochore serum reveals a greater inter-kinetochore distance than in controls or chromosomes digested with enzymes that spare satellite. We conclude that the presence of mouse satellite DNA in these regions is necessary for maintenance of contact between the sister chromatids of mouse mitotic chromosomes.
منابع مشابه
Novel structural organisation of a Mus musculus DBA/2 chromosome shows a fixed position for the centromere.
Chromosome 1 of the inbred mouse strain DBA/2 shows an unusual polymorphism associated with its centromeric satellite DNA sequences. The minor satellite array has undergone amplification and is present as two blocks separated by major satellite sequences. Both minor satellite blocks appear to carry the sequence motif necessary for CENP-B protein binding. Despite this apparent similarity the fun...
متن کاملPericentric Chromatin Is Organized into an Intramolecular Loop in Mitosis
BACKGROUND Cohesin proteins link sister chromatids and provide the basis for tension between bioriented sister chomatids in mitosis. Cohesin is concentrated at the centromere region of the chromosome despite the fact that sister centromeres can be separated by 800 nm in vivo. The function of cohesin at sites of separated DNA is unknown. RESULTS We provide evidence that the kinetochore promote...
متن کاملIntegrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T.
Centromeres are highly specialized chromatin domains that enable chromosome segregation and orchestrate faithful cell division. Human centromeres are composed of tandem arrays of α-satellite DNA, which spans up to several megabases. Little is known about the mechanisms that maintain integrity of the long arrays of α-satellite DNA repeats. Here, we monitored centromeric repeat stability in human...
متن کاملAlternative meiotic chromatid segregation in the holocentric plant Luzula elegans
Holocentric chromosomes occur in a number of independent eukaryotic lineages. They form holokinetic kinetochores along the entire poleward chromatid surfaces, and owing to this alternative chromosome structure, species with holocentric chromosomes cannot use the two-step loss of cohesion during meiosis typical for monocentric chromosomes. Here we show that the plant Luzula elegans maintains a h...
متن کاملSister-Chromatid Telomere Cohesion Is Nonredundant and Resists Both Spindle Forces and Telomere Motility
It is well documented that inactivation of essential cohesion proteins results in precocious sister-chromatid separation. On average, however, only approximately 55% of cohesin-deficient budding yeast cells arrested prior to anaphase contain separated sister chromatids , suggesting that cohesin-independent factors also contribute to sister-chromatid pairing. Recently, redundant pairing mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 103 شماره
صفحات -
تاریخ انتشار 1986