Adjoint tomography of the crust and upper mantle structure beneath the Kanto region using broadband seismograms
نویسندگان
چکیده
A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography for application in the effective reproduction of observed waveforms. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the Pand S-wave speeds Vp and Vs. Additionally, all centroid times of the source solutions were determined before the structural inversion. The synthetic displacements were calculated using the spectral-element method (SEM) in which the Kanto region was parameterized using 16 million grid points. The model parameters Vp and Vs were updated iteratively by Newton’s method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. Computations of the forward and adjoint simulations were conducted on the K computer in Japan. The optimized SEM code required a total of 6720 simulations using approximately 62,000 node hours to obtain the final model after 16 iterations. The proposed model reveals several anomalous areas with extremely low-Vs values in comparison with those of the initial model. These anomalies were found to correspond to geological features, earthquake sources, and volcanic regions with good data coverage and resolution. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes showed better fit than the initial model to the observed waveforms in different period ranges within 5–30 s. This result indicates that the model can accurately predict actual waveforms.
منابع مشابه
2-D Surface Wave Tomography in the Northwest Part of the Iranian Plateau
In this study, we obtained two-dimensional tomography maps of the Rayleigh wave group velocity for the northwest part of the Iranian Plateau in order to investigate the structure of the crust and the uppermost mantle of NW Iran. To do this, the local earthquake data during the period 2006-2013, recorded by the 10 broadband stations of the Iranian seismic network (INSN) were used. After the prel...
متن کاملThree dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography∗
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green’s functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We t...
متن کاملThickness of Crust in the West of Iran Obtained from Modeling of Ps Converted Waves
Receiver functions are usually used to detect Ps converted waves and are especially useful to picture seismic discontinuities in the crust and upper mantle. In this study, the P receiver function technique beneath the west Iran is used to map out the lateral variation of the Moho boundary. The teleseismic data (Mb ≥5.5, epicentral distance between 30˚-95˚) recorded from 2004 to 2016 at 17 perma...
متن کاملShear-velocity structure of the crust and upper mantle beneath the Tibetan Plateau and southeastern China
S U M M A R Y This paper addresses the velocity structure of the crust and upper mantle beneath southern China with special emphasis on the Tibet region. Waveform data from 48 earthquakes as recorded on the WWSSN and GDSN are used in this detailed forward modelling study. Constraints on the upper crustal section are derived from modelling local Love waves in the time domain applying the mode-su...
متن کاملCrust and upper mantle discontinuity structure beneath eastern North America
[1] Crust and mantle discontinuities across the eastern margin of the North American craton were imaged using P to S converted phase receiver functions recorded by the Missouri to Massachusetts Broadband Seismometer Experiment. Crustal structure constrained by modeling Moho conversions and reverberations shows a variation of Moho depth from a minimum of 30 km near the Atlantic coast to depths o...
متن کامل