Nip1p associates with 40 S ribosomes and the Prt1p subunit of eukaryotic initiation factor 3 and is required for efficient translation initiation.
نویسندگان
چکیده
Nip1p is an essential Saccharomyces cerevisiae protein that was identified in a screen for temperature conditional (ts) mutants exhibiting defects in nuclear transport. New results indicate that Nip1p has a primary role in translation initiation. Polysome profiles indicate that cells depleted of Nip1p and nip1-1 cells are defective in translation initiation, a conclusion that is supported by a reduced rate of protein synthesis in Nip1p-depleted cells. Nip1p cosediments with free 40 S ribosomal subunits and polysomal preinitiation complexes, but not with free or elongating 80 S ribosomes or 60 S subunits. Nip1p can be isolated in an about 670-kDa complex containing polyhistidine-tagged Prt1p, a subunit of translation initiation factor 3, by binding to Ni2+-NTA-agarose beads in a manner completely dependent on the tagged form of Prt1p. The nip1-1 ts growth defect was suppressed by the deletion of the ribosomal protein, RPL46. Also, nip1-1 mutant cells are hypersensitive to paromomycin. These results suggest that Nip1p is a subunit of eukaryotic initiation factor 3 required for efficient translation initiation.
منابع مشابه
Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e.
40S ribosomes are loaded onto capped mRNAs via the multisubunit translation initiation factors eIF3 and eIF4F. While eIF4E is the eIF4F cap recognition component, the eIF4G subunit associates with 40S-bound eIF3. How this intricate process is coordinated remains poorly understood. Here, we identify an eIF3 subunit that regulates eIF4F modification and show that eIF3e is required for inducible e...
متن کاملChanges in ribosomal binding activity of eIF3 correlate with increased translation rates during activation of T lymphocytes.
The rate of protein synthesis in quiescent peripheral blood T lymphocytes increases dramatically following mitogenic activation. The stimulation of translation is due to an increase in the rate of initiation caused by the regulation of initiation factor activities. Here, we focus on eIF3, a large multiprotein complex that plays a central role in the formation of the 40 S initiation complex. Usi...
متن کاملThe j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal subunits in vitro.
Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual huma...
متن کاملA region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.
The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF...
متن کاملeIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II.
Specific interactions of the classical swine fever virus internal ribosomal entry site (IRES) with 40S ribosomal subunits and eukaryotic translation initiation factor (eIF)3 enable 43S preinitiation complexes containing eIF3 and eIF2-GTP-Met-tRNA(iMet) to bind directly to the initiation codon, yielding 48S initiation complexes. We report that eIF5B or eIF5B/eIF3 also promote Met-tRNA(iMet) bind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 36 شماره
صفحات -
تاریخ انتشار 1998