Domain Embedding and the Dirichlet Problem
نویسندگان
چکیده
In this paper we study domain embedding preconditioners for discrete linear systems approximating the Dirichlet problem associated a second order elliptic equation. We observe that if a mixed finite element discretization is used, then such a preconditioner can be constructed in a straightforward manner from the H(div)–inner product. We also use the H(div)–inner product to construct a new preconditioner for the Lagrange multiplier system.
منابع مشابه
Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملDomain Embedding Preconditioners for Mixed Systems 1
In this paper we study block diagonal preconditioners for mixed systems derived from the Dirichlet problems for second order elliptic equations. The main purpose is to discuss how an embedding of the original computational domain into a simpler extended domain can be utilized in this case. We show that a family of uniform preconditioners for the corresponding problem on the extended, or ctitiou...
متن کاملDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملDomain embedding preconditioners for mixed systems
In this paper we study block diagonal preconditioners for mixed systems derived from the Dirichlet problems for second order elliptic equations The main purpose is to discuss how an embedding of the original computational domain into a simpler extended domain can be utilized in this case We show that a family of uniform preconditioners for the corresponding problem on the extended or ctitious d...
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کامل