Computing Minimal Generating Sets of Invariant Rings of Permutation Groups with SAGBI-Gröobner Basis
نویسنده
چکیده
We present a characteristic-free algorithm for computing minimal generating sets of invariant rings of permutation groups. We circumvent the main weaknesses of the usual approaches (using classical Gröbner basis inside the full polynomial ring, or pure linear algebra inside the invariant ring) by relying on the theory of SAGBI-Gröbner basis. This theory takes, in this special case, a strongly combinatorial flavor, which makes it particularly effective.
منابع مشابه
New Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups
In this paper, a new algorithm for computing secondary invariants of invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants. The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...
متن کاملOptimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order
)( was investigated. It turned out that only invariant rings of direct products of symmetric groups have a finite SAGBI basis, which is then, in addition, multilinear. Of course, it would be of interest to have such a strong characterization with respect to any other admissible order [4, 6]. To achieve this seems to be all but trivial. One step towards the understanding of the behavior of SAGBI...
متن کاملMinimal generating sets of non-modular invariant rings of finite groups
It is a classical problem to compute a minimal set of invariant polynomials generating the invariant ring of a finite group as an algebra. We present here an algorithm for the computation of minimal generating sets in the non-modular case. Apart from very few explicit computations of Gröbner bases, the algorithm only involves very basic operations. As a test bed for comparative benchmarks, we u...
متن کاملSets of Non - Modular Invariant Rings
It is a classical problem to compute a minimal set of invariant polynomials generating the invariant ring of a finite group as an algebra. We present here an algorithm for the computation of minimal generating sets in the non-modular case. Apart from very few explicit computations of Gröbner bases, the algorithm only involves very basic operations, and is thus rather fast. As a test bed for com...
متن کاملGenerating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کامل