Shattering and Compressing Networks for Betweenness Centrality
نویسندگان
چکیده
The betweenness metric has always been intriguing and used in many analyses. Yet, it is one of the most computationally expensive kernels in graph mining. For that reason, making betweenness centrality computations faster is an important and well-studied problem. In this work, we propose the framework, BADIOS, which compresses a network and shatters it into pieces so that the centrality computation can be handled independently for each piece. Although BADIOS is designed and tuned for betweenness centrality, it can easily be adapted for other centrality metrics. Experimental results show that the proposed techniques can be a great arsenal to reduce the centrality computation time for various types and sizes of networks. In particular, it reduces the computation time of a 4.6 million edges graph from more than 5 days to less than 16 hours.
منابع مشابه
Shattering and Compressing Networks for Centrality Analysis
Who is more important in a network? Who controls the flow between the nodes or whose contribution is significant for connections? Centrality metrics play an important role while answering these questions. The betweenness metric is useful for network analysis and implemented in various tools. Since it is one of the most computationally expensive kernels in graph mining, several techniques have b...
متن کاملA Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications
A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...
متن کاملA Graph Manipulations for Fast Centrality Computation
The betweenness and closeness metrics are widely used metrics in many network analysis applications. Yet, they are expensive to compute. For that reason, making the betweenness and closeness centrality computations faster is an important and well-studied problem. In this work, we propose the framework BADIOS which manipulates the graph by compressing it and splitting into pieces so that the cen...
متن کاملThe Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملAnalyzing the Collaboration Network of Global Scientific Outputs in the Field of Bibliotherapy in the Web of Science Database
Background and Aim: Bibliotherapy is a useful treatment for the prevention and treatment of mental disorders and has led to the formation of many scientific publications in this field. The purpose of this study was to investigate the publication trends in the field of bibliotherapy and visualize the structure of its scientific collaborations based on the Web of Science database during the perio...
متن کامل