Isotachophoresis of proteins in a networked microfluidic chip: experiment and 2-D simulation.
نویسندگان
چکیده
This paper reports both the experimental application and 2-D simulation of ITP of proteins in a networked microfluidic chip. Experiments demonstrate that a mixture of three fluorescent proteins can be concentrated and stacked into adjacent zones of pure protein under a constant voltage of 100 V over a 2 cm long microchannel. Measurements of the isotachophoretic velocity of the moving zones demonstrates that, during ITP under a constant voltage, the zone velocity decreases as more of the channel is occupied by the terminating electrolyte. A 2-D ITP model based on the Nernst-Planck equations illustrates the stacking and separation features of ITP using simulations of three virtual proteins. The self-sharpening behavior of ITP zones dispersed by a T-junction is clearly demonstrated both by experiment and by simulation. Comparison of 2-D simulations of ITP and zone electrophoresis (ZE) confirms that ZE lacks the ability to resharpen protein zones after they pass through a T-junction.
منابع مشابه
Automated electric valve for electrokinetic separation in a networked microfluidic chip.
This paper describes an automated electric valve system designed to reduce dispersion and sample loss into a side channel when an electrokinetically mobilized concentration zone passes a T-junction in a networked microfluidic chip. One way to reduce dispersion is to control current streamlines since charged species are driven along them in the absence of electroosmotic flow. Computer simulation...
متن کاملSimultaneous purification and fractionation of nucleic acids and proteins from complex samples using bidirectional isotachophoresis Supporting Information
This document contains the following supplementary figures and information further describing our bidirectional ITP-based technique for simultaneous purification and fractionation of nucleic acids and proteins from complex biological samples: • Figure S-1: Images of on-chip DNA ITP zones and protein ITP zones • Figure S-2: Experimental setup and procedure • Figure S-3: Simulation and visualizat...
متن کاملFluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملIntegrated printed circuit board device for cell lysis and nucleic acid extraction.
Preparation of raw, untreated biological samples remains a major challenge in microfluidics. We present a novel microfluidic device based on the integration of printed circuit boards and an isotachophoresis assay for sample preparation of nucleic acids from biological samples. The device has integrated resistive heaters and temperature sensors as well as a 70 μm × 300 μm × 3.7 cm microfluidic c...
متن کاملImaging and quantification of isotachophoresis zones using nonfocusing fluorescent tracers.
We present a novel method for visualizing isotachophoresis (ITP) zones. We introduce negligibly small concentrations of a fluorophore that is not focused by isotachophoresis. This nonfocusing tracer (NFT) migrates through multiple isotachophoresis zones. As it enters each zone, the NFT concentration adapts to the local electric field in each zone. ITP zones can then be visualized with a point d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electrophoresis
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2007