A Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm

نویسنده

  • SARAH MASON
چکیده

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure commutes with the Robinson-Schensted-Knuth Algorithm, and therefore retains many of its properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on ‘a Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm’

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...

متن کامل

Nonsymmetric Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm

We exhibit a weight-preserving bijection between semi-standard Young tableaux and skyline augmented fillings to provide the first combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for skyline augmented fillings. We also prove that ...

متن کامل

Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm

We introduce a generalization of the Robinson-Schensted-Knuth algorithm to composition tableaux involving an arbitrary permutation. If the permutation is the identity our construction reduces to Mason’s original composition Robinson-Schensted-Knuth algorithm. In particular we develop an analogue of Schensted insertion in our more general setting, and use this to obtain new decompositions of the...

متن کامل

Factorization of the Robinson-Schensted-Knuth correspondence

In [4], a bijection between collections of reduced factorizations of elements of the symmetric group was described. Initially, this bijection was used to show the Schur positivity of the Stanley symmetric functions. Further investigations have revealed that our bijection has strong connections to other more familiar combinatorial algorithms. In this paper we will show how the Robinson-Schensted...

متن کامل

Pieri’s Formula for Generalized Schur Polynomials

Young’s lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008