Oxidation of NADPH by submitochondrial particles from beef heart in complete absence of transhydrogenase activity from NADPH to NAD.

نویسندگان

  • L Djavadi-Ohaniance
  • H Hatefi
چکیده

Treatment of submitochondrial particles (ETP) with trypsin at 0 degrees destroyed NADPH leads to NAD (or 3-acetylpyridine adenine dinucleotide, AcPyAD) transhydrogenase activity. NADH oxidase activity was unaffected; NADPH oxidase and NADH leads to AcPyAD transhydrogenase activities were diminished by less than 10%. When ETP was incubated with trypsin at 30 degrees, NADPH leads to NAD transhydrogenase activity was rapidly lost, NADPH oxidase activity was slowly destroyed, but NADH oxidase activity remained intact. The reduction pattern by NADPH, NADPH + NAD, and NADH of chromophores absorbing at 475 minus 510 nm (flavin and iron-sulfur centers) in complex I (NADH-ubiquinone reductase) or ETP treated with trypsin at 0 degrees also indicated specific destruction of transhydrogenase activity. The sensitivity of the NADPH leads to NAD transhydrogenase reaction to trypsin suggested the involvement of susceptible arginyl residues in the enzyme. Arginyl residues are considered to be positively charged binding sites for anionic substrates and ligands in many enzymes. Treatment of ETP with the specific arginine-binding reagent, butanedione, inhibited transhydrogenation from NADPH leads to NAD (or AcPyAD). It had no effect on NADH oxidation, and inhibited NADPH oxidation and NADH leads to AcPyAD transhydrogenation by only 10 to 15% even after 30 to 60 min incubation of ETP with butanedione. The inhibition of NADPH leads to NAD transhydrogenation was diminished considerably when butanedione was added to ETP in the presence of NAD or NADP. When both NAD and NADP were present, the butanedione effect was completely abolished, thus suggesting the possible presence of arginyl residues at the nucleotide binding site of the NADPH leads to NAD transhydrogenase enzyme. Under conditions that transhydrogenation from NADPH to NAD was completely inhibited by trypsin or butanedione, NADPH oxidation rate was larger than or equal to 220 nmol min-1 mg-1 ETP protein at pH 6.0 and 30 degrees. The above results establish that in the respiratory chain of beef-heart mitochondria NADH oxidation, NADPH oxidation, and NADPH leads to NAD transhydrogenation are independent reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy-linked nicotinamide-nucleotide transhydrogenase. Characterization of reconstituted ATP-driven transhydrogenase from beef heart mitochondria.

The interaction between pure transhydrogenase and ATPase (Complex V) from beef heart mitochondria was investigated with transhydrogenase-ATPase vesicles in which the two proteins were co-reconstituted by dialysis or dilution procedures. In addition to phosphatidylcholine and phosphatidylethanolamine, reconstitution required phosphatidylserine and lysophosphatidylcholine. Transhydrogenase-ATPase...

متن کامل

On the presence of a nicotinamide nucleotide transhydrogenase in mitochondria from potato tuber.

Mitochondria isolated from potato (Solanum tuberosum L.) tuber were investigated for the presence of a nicotinamide nucleotide transhydrogenase activity. Submitochondrial particles derived from these mitochondria by sonication catalyzed a reduction of NAD(+) or 3-acetylpyridine-NAD(+) by NADPH, which showed a maximum of about 50 to 150 nanomoles/minute.milligram protein at pH 5 to 6. The K(m) v...

متن کامل

Bovine Heart Mitochondrial Transhydrogenase Catalyzes an Exchange

Reconstitution of homogeneous bovine heart mitochondrial transhydrogenase into phosphatidylcholine liposomes results in a greater than 80% inhibition of NADPH + 3-acetylpyridine adenine dinucleotide (AcPyAD') transhydrogenation. This coupled rate is stimulated 5-fold by addition of protonophore to the rate observed with unreconstituted enzyme. In the absence of uncoupler, addition of low concen...

متن کامل

Inhibition of the mitochondrial nicotinamide nucleotide transhydrogenase by dicyclohexylcarbodiimide and diethylpyrocarbonate.

The mitochondrial nicotinamide nucleotide transhydrogenase enzyme (EC 1.6.1.1) is inhibited by treatment with dicyclohexylcarbodiimide or diethylpyrocarbonate. Both inhibitions are pseudo first order with respect to incubation time, and both reaction orders with respect to inhibitor concentration are close to unit, indicating that in each case inhibition results from the binding of one inhibito...

متن کامل

The reaction mechanism of the mitochondrial pyridine nucleotide transhydrogenase. A study utilizing arylazido-pyridine nucleotide analogues.

The addition of a purified mitochondrial pyridine nucleotide transhydrogenase enzyme preparation to complex I (NADH-CoQ reductase) results in a significant increase in the NADPH-AcPyAD+ transhydrogenase activity of the complex without influencing the NADH-AcPyAD+ transhydrogenase activity. When subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of complex I, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 250 24  شماره 

صفحات  -

تاریخ انتشار 1975