Mast cell regulation of Na-glutamine co-transporters B0AT1 in villus and SN2 in crypt cells during chronic intestinal inflammation
نویسندگان
چکیده
BACKGROUND In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. METHODS Chronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with (3)H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies. RESULTS In villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged. CONCLUSION In the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells that are uniquely altered in the chronically inflamed small intestine.
منابع مشابه
Unique regulation of Na‐glutamine cotransporter SN2/SNAT5 in rabbit intestinal crypt cells during chronic enteritis
The only Na-nutrient cotransporter described in mammalian small intestinal crypt cells is SN2/SNAT5, which facilitates glutamine uptake. In a rabbit model of chronic intestinal inflammation, SN2 stimulation is secondary to an increase in affinity of the cotransporter for glutamine. However, the immune regulation of SN2 in the crypt cells during chronic intestinal inflammation is unknown. We sou...
متن کاملIdentification and characterization of rabbit small intestinal villus cell brush border membrane Na-glutamine cotransporter.
Glutamine, the primary metabolic fuel for the mammalian small intestinal enterocytes, is primarily assimilated by Na-amino acid cotransporters. Although Na-solute cotransport has been shown to exist in the brush border membrane (BBM) of the absorptive villus cells, the identity of Na-glutamine cotransport in rabbit small intestinal villus cells was unknown. Na-dependent glutamine uptake is pres...
متن کاملCrypt/villus site of substrate-dependent regulation of mouse intestinal glucose transporters.
The intestinal epithelium is in a constant state of turnover, with cells differentiating at the crypts and then migrating toward the tips of the villi. Does substrate-dependent regulation of intestinal Na+/D-glucose cotransporters occur only in crypt cells, or can transport activity be subsequently reprogrammed in mature enterocytes? We used in situ, glucose-protectable specific phlorizin bindi...
متن کاملPhysiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine.
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its ...
متن کاملEnergy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis
Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestin...
متن کامل