The Best Circulant Preconditioners for Hermitian Toeplitz Systems

نویسندگان

  • Raymond H. Chan
  • Andy M. Yip
  • Michael K. Ng
چکیده

In this paper, we propose a new family of circulant preconditioners for ill-conditioned Hermitian Toeplitz systems Ax = b. The preconditioners are constructed by con-volving the generating function f of A with the generalized Jackson kernels. For an n-by-n Toeplitz matrix A, the construction of the preconditioners only requires the entries of A and does not require the explicit knowledge of f. When f is a nonnegative continuous function with a zero of order 2p, the condition number of A is known to grow as O(n 2p). We show however that our preconditioner is positive deenite and the spectrum of the preconditioned matrix is uniformly bounded except for at most 2p+1 outliers. Moreover the smallest eigenvalue is uniformly bounded away from zero. Hence the conjugate gradient method, when applied to solving the preconditioned system, converges linearly. The total complexity of solving the system is therefore of O(n log n) operations. In the case when f is positive, we show that the convergence is superlinear. Numerical results are included to illustrate the eeectiveness of our new circulant preconditioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circulant/Skewcirculant Matrices as Preconditioners for Hermitian Toeplitz Systems

We study the solutions of Hermitian positive definite Toeplitz systems Tnx = b by the preconditioned conjugate gradient method. For preconditioner An the convergence rate is known to be governed by the distribution of the eigenvalues of the preconditioned matrix A−1 n Tn . New properties of the circulant preconditioners introduced by Strang, R. Chan, T. Chan, Szegö/Grenander and Tyrtyshnikov ar...

متن کامل

Circulant Preconditioners Constructed From Kernels

We consider circulant preconditioners for Hermitian Toeplitz systems from the view point of function theory. We show that some well-known circulant preconditioners can be derived from convoluting the generating function f of the Toeplitz matrix with famous kernels like the Dirichlet and the Fej er kernels. Several circulant precondition-ers are then constructed using this approach. Finally, we ...

متن کامل

Generalized circulant Strang-type preconditioners

SUMMARY Strang's proposal to use a circulant preconditioner for linear systems of equations with a Hermitian positive definite Toeplitz matrix has given rise to considerable research on circulant preconditioners. This paper presents an {e iϕ }-circulant Strang-type preconditioner.

متن کامل

Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems

We consider the solutions of Hermitian Toeplitz systems where the Toeplitz matrices are generated by nonnegative functions f. The preconditioned conjugate gradient method with well-known circulant preconditioners fails in the case when f has zeros. In this paper, we employ Toeplitz matrices of xed band-width as preconditioners. Their generating functions g are trigonometric poly-nomials of xed ...

متن کامل

The best circulant preconditioners for Hermitian Toeplitz systems II: The multiple-zero case

In 10, 14], circulant-type preconditioners have been proposed for ill-conditioned Her-mitian Toeplitz systems that are generated by nonnegative continuous functions with a zero of even order. The proposed circulant preconditioners can be constructed without requiring explicit knowledge of the generating functions. It was shown that the spectra of the preconditioned matrices are uniformly bounde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000