Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling

نویسندگان

  • Changjiang You
  • Tatiana T Marquez-Lago
  • Christian Paolo Richter
  • Stephan Wilmes
  • Ignacio Moraga
  • K Christopher Garcia
  • André Leier
  • Jacob Piehler
چکیده

The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of v...

متن کامل

Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling.

The suppressor of cytokine signaling 2 (SOCS2) is a member of the SOCS family of E3 ubiquitin ligases. SOCS2 is known to regulate signal transduction by cytokine receptors and receptor tyrosine kinases. The receptor tyrosine kinase FLT3 is of importance for proliferation, survival and differentiation of hematopoietic cells and is frequently mutated in acute myeloid leukemia. We observed that SO...

متن کامل

Regulation of myelopoiesis through syntenin-mediated modulation of IL-5 receptor output.

The granulocyte-macrophage colony-stimulating factor (GM-CSF)/interleukin (IL)-3/IL-5 receptor family regulates the production and function of myeloid cells. These cytokines signal through receptor complexes that consist of unique ligand-binding alpha-chains and common signaling beta-chains. IL-5 is distinct from IL-3 and GM-CSF in its capacity to induce eosinophil development, however, the mol...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016