Adhesion and friction in gecko toe attachment and detachment.
نویسندگان
چکیده
Geckos can run rapidly on walls and ceilings, requiring high friction forces (on walls) and adhesion forces (on ceilings), with typical step intervals of approximately 20 ms. The rapid switching between gecko foot attachment and detachment is analyzed theoretically based on a tape model that incorporates the adhesion and friction forces originating from the van der Waals forces between the submicron-sized spatulae and the substrate, which are controlled by the (macroscopic) actions of the gecko toes. The pulling force of a spatula along its shaft with an angle between theta 0 and 90 degrees to the substrate, has a "normal adhesion force" contribution, produced at the spatula-substrate bifurcation zone, and a "lateral friction force" contribution from the part of spatula still in contact with the substrate. High net friction and adhesion forces on the whole gecko are obtained by rolling down and gripping the toes inward to realize small pulling angles between the large number of spatulae in contact with the substrate. To detach, the high adhesion/friction is rapidly reduced to a very low value by rolling the toes upward and backward, which, mediated by the lever function of the setal shaft, peels the spatulae off perpendicularly from the substrates. By these mechanisms, both the adhesion and friction forces of geckos can be changed over three orders of magnitude, allowing for the swift attachment and detachment during gecko motion. The results have obvious implications for the fabrication of dry adhesives and robotic systems inspired by the gecko's locomotion mechanism.
منابع مشابه
Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion
The mechanics of reversible adhesion of the gecko is investigated in terms of the attachment and detachment mechanisms of the hierarchical microstructures on its toe. At the bottom of the hierarchy, we show that a spatula pad of tiny thickness can be well absorbed onto a substrate with a large surface area and a highly constrained decohesion process zone, both of which are beneficial for robust...
متن کاملcn Mechanical analyses on the digital behaviour of the Tokay gecko ( Gekko gecko ) based on a multi - level directional adhesion model XuanWu 1 , 2 , Xiaojie Wang 2 , Tao Mei 1 and
This paper proposes a multi-level hierarchical model for the Tokay gecko (Gekko gecko) adhesive system and analyses the digital behaviour of the G. gecko under macro/meso-level scale. The model describes the structures of G. gecko’s adhesive system from the nano-level spatulae to the sub-millimetre-level lamella. The G. gecko’s seta is modelled using inextensible fibril based on Euler’s elastic...
متن کاملFrictional adhesion: A new angle on gecko attachment.
Directional arrays of branched microscopic setae constitute a dry adhesive on the toes of pad-bearing geckos, nature's supreme climbers. Geckos are easily and rapidly able to detach their toes as they climb. There are two known mechanisms of detachment: (1) on the microscale, the seta detaches when the shaft reaches a critical angle with the substrate, and (2) on the macroscale, geckos hyperext...
متن کاملcn Mechanical analyses on the digital behaviour of the Tokay gecko ( Gekko gecko ) based on a multi - level directional adhesion model XuanWu
This paper proposes a multi-level hierarchical model for the Tokay gecko (Gekko gecko) adhesive system and analyses the digital behaviour of the G. gecko under macro/meso-level scale. The model describes the structures of G. gecko’s adhesive system from the nano-level spatulae to the sub-millimetre-level lamella. The G. gecko’s seta is modelled using inextensible fibril based on Euler’s elastic...
متن کاملMechanical analyses on the digital behaviour of the Tokay gecko ( Gekko gecko ) based on a multi - level directional adhesion model XuanWu
This paper proposes a multi-level hierarchical model for the Tokay gecko (Gekko gecko) adhesive system and analyses the digital behaviour of the G. gecko under macro/meso-level scale. The model describes the structures of G. gecko’s adhesive system from the nano-level spatulae to the sub-millimetre-level lamella. The G. gecko’s seta is modelled using inextensible fibril based on Euler’s elastic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 51 شماره
صفحات -
تاریخ انتشار 2006