Defining the function of xeroderma pigmentosum group F protein in psoralen interstrand cross-link-mediated DNA repair and mutagenesis.

نویسندگان

  • Zhiwen Chen
  • Xiaoxin Susan Xu
  • Jason Harrison
  • Gan Wang
چکیده

Many commonly used drugs, such as psoralen and cisplatin, can generate a very unique type of DNA damage, namely ICL (interstrand cross-link). An ICL can severely block DNA replication and transcription and cause programmed cell death. The molecular mechanism of repairing the ICL damage has not been well established. We have studied the role of XPF (xeroderma pigmentosum group F) protein in psoralen-induced ICL-mediated DNA repair and mutagenesis. The results obtained from our mutagenesis studies revealed a very similar mutation frequency in both human normal fibroblast cells and XPF cells. The mutation spectra generated in both cells, however, were very different: most of the mutations generated in the normal fibroblast cells were T167-->A transversions, whereas most of the mutations generated in the XPF cells were T167-->G transversions. When a wild-type XPF gene cDNA was stably transfected into the XPF cells, the T167-->A mutations were increased and the T167-->G mutations were decreased. We also determined the DNA repair capability of the XPF cells using both the host-cell reactivation and the in vitro DNA repair assays. The results obtained from the host-cell reactivation experiments revealed an effective reactivation of a luciferase reporter gene from the psoralen-damaged plasmid in the XPF cells. The results obtained from the in vitro DNA repair experiments demonstrated that the XPF nuclear extract is normal in introducing dual incisions during the nucleotide excision repair process. These results suggest that the XPF protein has important roles in the psoralen ICL-mediated DNA repair and mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ERCC 4 ( xeroderma pigmentosum , complementation group F )

Xeroderma pigmentosum group F complementing factor; DNA-repair protein complementing XPF cells 905 amino acids; form a stable complex with the ERCC1 protein; The XPF protein and the ERCC1 protein form a complex that exhibits structure specific endonuclease activity that is responsible for the 5' incision during the NER reaction. XPF-ERCC1 also binds to XPA (through ERCC1) and to RPA (through XP...

متن کامل

Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?

The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss rece...

متن کامل

Repair of psoralen-induced cross-links and monoadducts in normal and repair-deficient human fibroblasts.

SV40-transformed normal, xeroderma pigmentosum (XP) and Fanconi's anemia (FA) fibroblasts have distinct repair capacities for monoadducts and DNA interstrand cross-links produced by exposure to near-UV (320-400 nm) light in the presence of 8-methoxypsoralen or angelicin. Excision repair of monoadducts occurred rapidly in normal and FA cells after exposure but not in XP cells. Cross-links were r...

متن کامل

The Human Oxidative DNA Glycosylase NEIL1 Excises Psoralen-induced Interstrand DNA Cross-links in a Three-stranded DNA Structure*S⃞

Previously, we have demonstrated that human oxidative DNA glycosylase NEIL1 excises photoactivated psoralen-induced monoadducts but not genuine interstrand cross-links (ICLs) in duplex DNA. It has been postulated that the repair of ICLs in mammalian cells is mainly linked to DNA replication and proceeds via dual incisions in one DNA strand that bracket the cross-linked site. This process, known...

متن کامل

Formation and repair of psoralen-DNA adducts and pyrimidine dimers in human DNA and chromatin.

DNA damage and repair in human cells exposed to ultraviolet light (254 nm) or to psoralen derivatives plus 360 nm light were compared by means of a variety of analytic techniques. The two kinds of damage show considerable structural similarity; both involve cyclobutyl bonds to 5,6 positions of pyrimidines as major products and have various minor products. In purified DNA, pyrimidine dimers, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 379 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004