Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage
نویسندگان
چکیده
Context. Coronal loops act as resonant cavities for low-frequency fluctuations that are transmitted from the deeper layers of the solar atmosphere. These fluctuations are amplified in the corona and lead to the development of turbulence that in turn is able to dissipate the accumulated energy, thus heating the corona. However, trapping is not perfect, because some energy leaks down to the chromosphere on a long timescale, limiting the turbulent heating. Aims. We consider the combined effects of turbulence and energy leakage from the corona to the photosphere in determining the turbulent energy level and associated heating rate in models of coronal loops, which include the chromosphere and transition region. Methods. We use a piece-wise constant model for the Alfvén speed in loops and a reduced MHD-shell model to describe the interplay between turbulent dynamics in the direction perpendicular to the mean field and propagation along the field. Turbulence is sustained by incoming fluctuations that are equivalent, in the line-tied case, to forcing by the photospheric shear flows. While varying the turbulence strength, we systematically compare the average coronal energy level and dissipation in three models with increasing complexity: the classical closed model, the open corona, and the open corona including chromosphere (or three-layer model), with the last two models allowing energy leakage. Results. We find that (i) leakage always plays a role. Even for strong turbulence, the dissipation time never becomes much lower than the leakage time, at least in the three-layer model; therefore, both the energy and the dissipation levels are systematically lower than in the line-tied model; (ii) in all models, the energy level is close to the resonant prediction, i.e., assuming an effective turbulent correlation time longer than the Alfvén coronal crossing time; (iii) the heating rate is close to the value given by the ratio of photospheric energy divided by the Alfvén crossing time; (iv) the coronal spectral range is divided in two: an inertial range with 5/3 spectral slope, and a large-scale peak where nonlinear couplings are inhibited by trapped resonant modes; (v) in the realistic three-layer model, the two-component spectrum leads to a global decrease in damping equal to Kolmogorov damping reduced by a factor urms/V a where V c a is the coronal Alfvén speed.
منابع مشابه
Observing the Roots of Solar Coronal Heating - in the Chromosphere
The Sun’s corona is millions of degrees hotter than its 5,000 K photosphere. This heating enigma is typically addressed by invoking the deposition at coronal heights of non-thermal energy generated by the interplay between convection and magnetic field near the photosphere. However, it remains unclear how and where coronal heating occurs and how the corona is filled with hot plasma. We show tha...
متن کاملThe Heating of Solar Coronal Loops by Alfvén Wave Turbulence
In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magneto-hydrodynamic (MHD) model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in t...
متن کاملCoronal Heating, Weak Mhd Turbulence and Scaling Laws
Long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out, within the framework of reduced magnetohydrodynamics (RMHD), to understand coronal heating driven by motion of field lines anchored in the photosphere. We unambiguously identify MHD anisotropic turbulence as the physical mechanism responsible for the transport of energy from the large ...
متن کاملEvidence of Shock-driven Turbulence in the Solar Chromosphere
We study the acoustic properties of the solar chromosphere in the high-frequency regime using a time sequence of velocity measurements in the chromospheric Ca II 854.2 nm line taken with the Interferometric Bidimensional Spectrometer (IBIS). We concentrate on quiet-Sun behavior, apply Fourier analysis, and characterize the observations in terms of the probability density functions (PDFs) of vel...
متن کاملSuccessful Coronal Heating and Solar Wind Acceleration by Mhd Waves by Numerical Simulations from Photosphere to 0.3au
We show that the coronal heating and the acceleration of the fast solar wind in the coronal holes are natural consequence of the footpoint fluctuations of the magnetic fields at the photosphere by one-dimensional, time-dependent, and nonlinear magnetohydrodynamical simulation with radiative cooling and thermal conduction. We impose low-frequency (< 0.05Hz) transverse photospheric motions, corre...
متن کامل