Restriction Varieties and Geometric Branching Rules

نویسنده

  • Izzet Coskun
چکیده

This paper develops a new method for studying the cohomology of orthogonal flag varieties. Restriction varieties are subvarieties of orthogonal flag varieties defined by rank conditions with respect to (not necessarily isotropic) flags. They interpolate between Schubert varieties in orthogonal flag varieties and the restrictions of general Schubert varieties in ordinary flag varieties. We give a positive, geometric rule for calculating their cohomology classes, obtaining a branching rule for Schubert calculus for the inclusion of the orthogonal flag varieties in Type-A flag varieties. Our rule, in addition to being an essential step in finding a Littlewood-Richardson rule, has applications to computing the moment polytopes of the inclusion of SO(n) in SU(n), the asymptotic of the restrictions of representations of SL(n) to SO(n) and the classes of the moduli spaces of rank two vector bundles with fixed odd determinant on hyperelliptic curves. Furthermore, for odd orthogonal flag varieties, we obtain an algorithm for expressing a Schubert cycle in terms of restrictions of Schubert cycles of Type-A flag varieties, thereby giving a geometric (though not positive) algorithm for multiplying any two Schubert cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic restriction varieties and geometric branching rules II

In this paper, we introduce combinatorially defined subvarieties of symplectic flag varieties called symplectic restriction varieties. We study their geometric properties and compute their cohomology classes. In particular, we give a positive, combinatorial, geometric branching rule for computing the map in cohomology induced by the inclusion i : SF (k1, . . . , kh;n) → F (k1, . . . , kh;n). Th...

متن کامل

Symplectic Restriction Varieties and Geometric Branching Rules

In this paper, we introduce new, combinatorially defined subvarieties of isotropic Grassmannians called symplectic restriction varieties. We study their geometric properties and compute their cohomology classes. In particular, we give a positive, combinatorial, geometric branching rule for computing the map in cohomology induced by the inclusion i : SG(k, n)→ G(k, n). This rule has many applica...

متن کامل

Algebro-geometric Feynman Rules

We give a general procedure to construct algebro-geometric Feynman rules, that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining motivic Feynman rules. We also con...

متن کامل

ON THE RESTRICTION OF ZUCKERMAN’S DERIVED FUNCTOR MODULES Aq(λ) TO REDUCTIVE SUBGROUPS

In this article, we study the restriction of Zuckerman’s derived functor (g,K)-modules Aq(λ) to g′ for symmetric pairs of reductive Lie algebras (g, g′). When the restriction decomposes into irreducible (g′,K′)-modules, we give an upper bound for the branching law. In particular, we prove that each (g′,K′)-module occurring in the restriction is isomorphic to a submodule of Aq′ (λ ′) for a parab...

متن کامل

A Class of Discriminant Varieties in the Conformal 3-Sphere

We associate a 3-manifold to a multiple valued semi-conformal mapping on the 3-sphere and study the branching set of the corresponding covering projection. Some remarkable geometric structures occur.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009