Deception Detection in Videos

نویسندگان

  • Zhe Wu
  • Bharat Singh
  • Larry S. Davis
  • V. S. Subrahmanian
چکیده

We present a system for covert automated deception detection using information available in a video. We study the importance of different modalities like vision, audio and text for this task. On the vision side, our system uses classifiers trained on low level video features which predict human microexpressions. We show that predictions of high-level microexpressions can be used as features for deception prediction. Surprisingly, IDT (Improved Dense Trajectory) features which have been widely used for action recognition, are also very good at predicting deception in videos. We fuse the score of classifiers trained on IDT features and high-level microexpressions to improve performance. MFCC (Mel-frequency Cepstral Coefficients) features from the audio domain also provide a significant boost in performance, while information from transcripts is not very beneficial for our system. Using various classifiers, our automated system obtains an AUC of 0.877 (10-fold cross-validation) when evaluated on subjects which were not part of the training set. Even though state-ofthe-art methods use human annotations of micro-expressions for deception detection, our fully automated approach outperforms them by 5%. When combined with human annotations of micro-expressions, our AUC improves to 0.922. We also present results of a user-study to analyze how well do average humans perform on this task, what modalities they use for deception detection and how they perform if only one modal-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Learning Approach for Multimodal Deception Detection

Automatic deception detection is an important task that has gained momentum in computational linguistics due to its potential applications. In this paper, we propose a simple yet tough to beat multi-modal neural model for deception detection. By combining features from different modalities such as video, audio, and text along with Micro-Expression features, we show that detecting deception in r...

متن کامل

The Dark Triad and the PID-5 Maladaptive Personality Traits: Accuracy, Confidence and Response Bias in Judgments of Veracity

The Dark Triad traits-narcissism, Machiavellianism and psychopathy-have been found to be associated with intra- or interpersonal deception production frequency. This cross-sectional study (N = 207) investigated if the Dark Triad traits are also associated with deception detection accuracy, as implicated by the recent conception of a deception-general ability. To investigate associations between...

متن کامل

Verbal and Nonverbal Clues for Real-life Deception Detection

Deception detection has been receiving an increasing amount of attention from the computational linguistics, speech, and multimodal processing communities. One of the major challenges encountered in this task is the availability of data, and most of the research work to date has been conducted on acted or artificially collected data. The generated deception models are thus lacking real-world ev...

متن کامل

Registered report: measuring unconscious deception detection by skin temperature

Findings from the deception detection literature suggest that although people are not skilled in consciously detecting a liar, they may intuit that something about the person telling a lie is off. In the current proposal, we argue that observing a liar influences the observer's physiology even though the observer may not be consciously aware of being lied to (i.e., the observers' direct decepti...

متن کامل

A New Method for Sperm Detection in Human Semen: Combination of Hypothesis Testing and Local Mapping of Wavelet Sub-Bands

Introduction Automated methods for sperm characterization in microscopic videos have some limitations such as: low contrast of the video frames and possibility of neighboring sperms to touch each other. In this paper a new method is introduced for detection of sperms in microscopic videos. Materials and Methods In this work, first microscopic videos are captured from specimens of human semen. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.04415  شماره 

صفحات  -

تاریخ انتشار 2017