Combining information theoretic kernels with generative embeddings for classification
نویسندگان
چکیده
Classical approaches to learn classifiers for structured objects (e.g., images, sequences) use generative models in a standard Bayesian framework. To exploit the state-of-the-art performance of discriminative learning, while also taking advantage of generative models of the data, generative embeddings have been recently proposed as a way of building hybrid discriminative/generative approaches. A generative space into a fixed dimensional space, adequate for discriminative classifier learning. Generative embeddings have been shown to often outperform the classifiers obtained directly from the generative models upon which they are built. Using a generative embedding for classification involves two main steps: (i) defining and learning a generative model and using it to build the embedding; (ii) discriminatively learning a (maybe kernel) classifier with the embedded data. The literature on generative embeddings is essentially focused on step (i), usually taking some standard off-the-shelf tool for step (ii). Here, we adopt a different approach, by focusing also on the discriminative learning step. In particular, we exploit the probabilistic nature of generative embeddings, by using kernels defined on probability measures; in particular we investigate the use of a recent family of non-extensive information theoretic kernels on the top of different generative embeddings. We show, in different medical applications that the approach yields state-of-the-art performance. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Renal Cancer Cell Classification Using Generative Embeddings and Information Theoretic Kernels
In this paper, we propose a hybrid generative/discriminative classification scheme and apply it to the detection of renal cell carcinoma (RCC) on tissue microarray (TMA) images. In particular we use probabilistic latent semantic analysis (pLSA) as a generative model to perform generative embedding onto the free energy score space (FESS). Subsequently, we use information theoretic kernels on the...
متن کاملInformation Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models
Many approaches to learning classifiers for structured objects (e.g., shapes) use generative models in a Bayesian framework. However, state-of-the-art classifiers for vectorial data (e.g., support vector machines) are learned discriminatively. A generative embedding is a mapping from the object space into a fixed dimensional feature space, induced by a generative model which is usually learned ...
متن کاملGenerative Embeddings based on Rician Mixtures - Application to Kernel-based Discriminative Classification of Magnetic Resonance Images
Most approaches to classifier learning for structured objects (such as images or sequences) are based on probabilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discriminatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings (of which the Fisher kernel is arguably the best known example);...
متن کاملGenerative embeddings based on Rician mixtures for kernel-based classification of magnetic resonance images
Classical approaches to classifier learning for structured objects (such as images or sequences) are based on probabilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discriminatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings (of which the Fisher kernel is arguably the best known exam...
متن کاملInformation Diffusion Kernels
A new family of kernels for statistical learning is introduced that exploits the geometric structure of statistical models. Based on the heat equation on the Riemannian manifold defined by the Fisher information metric, information diffusion kernels generalize the Gaussian kernel of Euclidean space, and provide a natural way of combining generative statistical modeling with non-parametric discr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 101 شماره
صفحات -
تاریخ انتشار 2013