Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility.
نویسندگان
چکیده
The aerial parts of plants are coated with an epicuticular wax layer, which is important as a first line of defense against external influences. In Arabidopsis, the ECERIFERUM (CER) genes effect different steps of the wax biosynthesis pathway. In this article, we describe the isolation of the CER1 gene, which encodes a novel protein involved in the conversion of long chain aldehydes to alkanes, a key step in was biosynthesis. CER1 was cloned after gene tagging with the heterologous maize transposable element system Enhancer-Inhibitor, also known as Suppressor-mutator. cer1 mutants display glossy green stems and fruits and are conditionally male sterile. The similarity of the CER1 protein with a group of integral membrane enzymes, which process highly hydrophobic molecules, points to a function of the CER1 protein as a decarbonylase.
منابع مشابه
WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis.
Epicuticular wax forms a layer of hydrophobic material on plant aerial organs, which constitutes a protective barrier between the plant and its environment. We report here the identification of WIN1, an Arabidopsis thaliana ethylene response factor-type transcription factor, which can activate wax deposition in overexpressing plants. We constitutively expressed WIN1 in transgenic Arabidopsis pl...
متن کاملOverexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses.
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis th...
متن کاملMolecular and Biochemical Characterization of Cotton Epicuticular Wax in Defense against Cotton Leaf Curl Disease
Background: Gossypium arboreum is resistant to Cotton leaf curl Burewala virus and its cognate Cotton leaf curl Multan betasatellite (CLCuBuV and CLCuMB). However, the G. arboreum wax deficient mutant (GaWM3) is susceptible to CLCuV. Therefore, epicuticular wax was characterized both quantitatively and qualitatively for its role as physical barrier against whitefly mediated viral transmission a...
متن کاملSuppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana.
Peroxisome biogenesis factor 10 (PEX10) is a component of the peroxisomal matrix protein import machinery. To analyze the physiological function of PEX10, we used transgenic AtPEX10i Arabidopsis plants that had suppressed expression of the PEX10 gene due to RNA interference. AtPEX10i plants had patches of paleness on leaves, and abnormal floral organs that were typical of cuticular wax-deficien...
متن کاملBiosynthesis and Pollen Fertility, Encodes a Very-Long-Chain Fatty Acid Condensing Enzyme
Land plants secrete a layer of wax onto their aerial surfaces that is essential for survival in a terrestrial environment. This wax is composed of long-chain, aliphatic hydrocarbons derived from very-long-chain fatty acids (VLCFAs). Using the Arabidopsis expressed sequence tag database, we have identified a gene, designated CUT1 , that encodes a VLCFA condensing enzyme required for cuticular wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 7 12 شماره
صفحات -
تاریخ انتشار 1995