A20 suppresses canonical Smad-dependent fibroblast activation: novel function for an endogenous inflammatory modulator
نویسندگان
چکیده
BACKGROUND The ubiquitin-editing cytosolic enzyme A20, the major negative regulator of toll-like receptor (TLR)-mediated cellular inflammatory responses, has tight genetic linkage with systemic sclerosis (SSc). Because recent studies implicate endogenous ligand-driven TLR signaling in SSc pathogenesis, we sought to investigate the regulation, role and mechanism of action of A20 in skin fibroblasts. METHOD A20 expression and the effects of forced A20 expression or siRNA-mediated A20 knockdown on fibrotic responses induced by transforming growth factor-ß (TGF-ß) were evaluated was evaluated in explanted human skin fibroblasts. Additionally, A20 regulation by TGF-ß, and by adiponectin, a pleiotropic adipokine with anti-fibrotic activity, was evaluated. RESULTS In normal fibroblasts, TGF-ß induced sustained downregulation of A20, and abrogated its TLR4-dependent induction. Forced expression of A20 aborted the stimulation of collagen gene expression and myofibroblast transformation induced by TGF-ß, and disrupted canonical Smad signaling and Smad-dependent transcriptional responses. Conversely, siRNA-mediated knockdown of A20 enhanced the amplitude of fibrotic responses elicited by TGF-ß. Adiponectin, previously shown to block TLR-dependent fibrotic responses, elicited rapid and sustained increase in A20 accumulation in fibroblasts. CONCLUSION These results identify the ubiquitin-editing enzyme A20 as a novel endogenous mechanism for negative regulation of fibrotic response intensity. Systemic sclerosis-associated genetic variants of A20 that cause impaired A20 expression or function, combined with direct suppression of A20 by TGF-ß within the fibrotic milieu, might play a significant functional role in persistence of fibrotic responses, while pharmacological augmentation of A20 inhibitory pathway activity might represent a novel therapeutic strategy.
منابع مشابه
Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation.
LUBAC (linear ubiquitin chain assembly complex) activates the canonical NF-κB pathway through linear polyubiquitination of NEMO (NF-κB essential modulator, also known as IKKγ) and RIP1. However, the regulatory mechanism of LUBAC-mediated NF-κB activation remains elusive. Here, we show that A20 suppresses LUBAC-mediated NF-κB activation by binding linear polyubiquitin via the C-terminal seventh ...
متن کاملA20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia.
A20 is a NF-kappaB-dependent gene that has dual anti-inflammatory and antiapoptotic functions in endothelial cells (EC). The function of A20 in smooth muscle cells (SMC) is unknown. We demonstrate that A20 is induced in SMC in response to inflammatory stimuli and serves an anti-inflammatory function via blockade of NF-kappaB and NF-kappaB-dependent proteins ICAM-1 and MCP-1. A20 inhibits SMC pr...
متن کاملRecruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease.
Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations. Individuals harboring these mutations develop inflammatory skin and int...
متن کاملPPARγ Downregulation by TGFß in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis
The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ s...
متن کاملErbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain.
Smad proteins are critical intracellular signaling mediators for the transforming growth factor beta (TGFbeta) superfamily. Here, we report that Erbin (for "ErbB2/Her2-interacting protein"), which contains leucine-rich repeats and a PDZ (PSD-95/DLG/ZO-1) domain, interacts specifically with Smad3 and, to a lesser extent, with Smad2 through a novel Smad-interacting domain (SID) adjacent to its PD...
متن کامل