The South Asian summer monsoon in the HadGEM2 family
نویسندگان
چکیده
Introduction Conclusions References Tables Figures Back Close Full Screen / Esc This discussion paper is/has been under review for the journal Earth System Dynamics (ESD). Please refer to the corresponding final paper in ESD if available. Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Abstract Various studies have shown the importance of Earth System feedbacks in the climate system and the necessity of including these in models used for making climate change projections. The HadGEM2 family of Met Office Unified Model configurations combines model components which facilitate the representation of many different processes 5 within the climate system, including atmosphere, ocean and sea ice, and Earth System components including the terrestrial and oceanic carbon cycle and tropospheric chemistry. We examine the climatology of the Asian summer monsoon in present-day simulations and in idealised climate change experiments in which a quadrupling of CO 2 is applied as a step change. Members of the HadGEM2 family are used, with a common 10 physical framework, one of which includes tropospheric chemistry and an interactive terrestrial and oceanic carbon cycle, to investigate whether such components affect the way in which the monsoon changes. We focus particularly on the role of interactive vegetation in the simulations from these model configurations. Using an atmosphere-only HadGEM2 configuration, we investigate how the changes in land cover which result 15 from the interaction between the dynamic vegetation and the model systematic rainfall biases affect the Asian summer monsoon, both in the present-day and in future climate projections. We demonstrate that the response of the dynamic vegetation to biases in regional climate, such as lack of rainfall over tropical dust-producing regions, can affect both the present-day simulation and the response to climate change forcing scenarios.
منابع مشابه
Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary
The East Asian summer monsoon controls the climatic regime of an extended region through temperature and precipitation changes. As the East Asian summer monsoon is primarily driven by the northern hemisphere summer insolation, such meteorological variables are expected to significantly change on the orbital timescale, influencing the composition of terrestrial sediments in terms of both mineral...
متن کاملEvaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region
1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...
متن کاملThermal Controls on the Asian Summer Monsoon
The Asian summer monsoon affects more than sixty percent of the world's population; understanding its controlling factors is becoming increasingly important due to the expanding human influence on the environment and climate and the need to adapt to global climate change. Various mechanisms have been suggested; however, an overarching paradigm delineating the dominant factors for its generation...
متن کاملSteady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed
[1] It is commonly believed that greenhouse-gas-induced global warming can weaken the east Asian winter monsoon but strengthen the summer monsoon, because of stronger warming over high-latitude land as compared to low-latitude oceans. In this study, we show that the surface wind speed associated with the east Asian monsoon has significantly weakened in both winter and summer in the recent three...
متن کاملA review of recent progress on Tibet’s role in the South Asian monsoon
The Tibetan Plateau exerts a profound influence on winds in boreal winter primarily through mechanical means, blocking flow to create waves in the jet stream that extend around Earth’s full circumference (e.g. Held et al., 2002). In contrast, this plateau was thought to influence boreal summer winds primarily through its thermal effects, providing a heat source over 4 km high and 2,000 km wide ...
متن کامل