Ruelle Zeta Function at Zero for Surfaces
نویسندگان
چکیده
We show that the Ruelle zeta function for a negatively curved oriented surface vanishes at zero to the order given by the absolute value of the Euler characteristic. This result was previously known only in constant curvature.
منابع مشابه
A 11 Integers 11 B ( 2011 ) Dynamical Zeta Functions
These notes are a rather subjective account of the theory of dynamical zeta functions. They correspond to three lectures presented by the author at the “Numeration” meeting in Leiden in 2010. 1 A Selection of Zeta Functions In its various manifestations, a zeta function ζ(s) is usually a function of a complex variable s ∈ C. We will concentrate on three main types of zeta function, arising in t...
متن کاملRuelle zeta function and Prime geodesic theorem for hyperbolic manifolds with cusps
For a d-dimensional real hyperbolic manifold with cusps, we obtain more refined error terms in the prime geodesic theorem (PGT) using the Ruelle zeta function instead of the Selberg zeta function. To do this, we prove that the Ruelle zeta function over this type manifold is a meromorphic function of order d over C.
متن کاملGeometric Zeta Functions, L-Theory, and Compact Shimura Manifolds
INTRODUCTION 4 Introduction Zeta functions encoding geometric information such as zeta functions of algebraic varieties over finite fields or zeta functions of finite graphs will loosely be called geometric zeta functions in the sequel. Sometimes the geometric situation gives one tools at hand to prove analytical continuation, functional equation and an adapted form of the Riemann hypothesis. T...
متن کاملRuelle type L - functions versus determinants of Laplacians for torsion free abelian groups ∗
We study Ruelle’s type zeta and L-functions for a torsion free abelian group Γ of rank ν ≥ 2 defined via an Euler product. It is shown that the imaginary axis is a natural boundary of this zeta function when ν = 2, 4 and 8, and in particular, such a zeta function has no determinant expression. Thus, conversely, expressions like Euler’s product for the determinant of the Laplacians of the torus ...
متن کاملJu n 20 02 Sinai billiards , Ruelle zeta - functions and Ruelle resonances : microwave experiments
We discuss the impact of recent developments in the theory of chaotic dynamical systems, particularly the results of Sinai and Ruelle, on microwave experiments designed to study quantum chaos. The properties of closed Sinai billiard microwave cavities are discussed in terms of universal predictions from random matrix theory, as well as periodic orbit contributions which manifest as ‘scars’ in e...
متن کامل