A non-smooth three critical points theorem with applications in differential inclusions

نویسندگان

  • Alexandru Kristály
  • Waclaw Marzantowicz
  • Csaba Varga
چکیده

We extend a recent result of Ricceri concerning the existence of three critical points of certain non-smooth functionals. Two applications are given, both in the theory of differential inclusions; the first one concerns a non-homogeneous Neumann boundary value problem, the second one treats a quasilinear elliptic inclusion problem in the whole RN .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Session 41: Topological and Variational Methods for Multivalued Differential Equations

Multivalued differential equations arise naturally in various branches of modern mathematics, indeed they play a significant role in the description of processes in control theory and non-smooth analysis. Due to their wide applicability in physics, biology, chemistry, and economics, there has recently been an increasing interest in this field. The aim of this Special Session is to outline the r...

متن کامل

Existence of three positive solutions for nonsmooth functional involving the p-biharmonic operator

This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...

متن کامل

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

Multiple critical points for non-differentiable parametrized functionals and applications to differential inclusions

In this paper we deal with a class of non-differentiable functionals defined on a real reflexive Banach space X and depending on a real parameter of the form Eλ(u) = L(u)− (J1 ◦T )(u)−λ(J2 ◦ S)(u), where L : X → R is a sequentially weakly lower semicontinuous C functional, J1 : Y → R, J2 : Z → R (Y, Z Banach spaces) are two locally Lipschitz functionals, T : X → Y , S : X → Z are linear and com...

متن کامل

Stability and Convergence of Euler's Method for State-Constrained Differential Inclusions

A discrete stability theorem for set-valued Euler’s method with state constraints is proven. This theorem is combined with known stability results for differential inclusions with so-called smooth state constraints. As a consequence, order of convergence equal to 1 is proven for set-valued Euler’s method, applied to state-constrained differential inclusions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010