Comparison and Analysis of Geometric Correction Models of Spaceborne SAR

نویسندگان

  • Weihao Jiang
  • Anxi Yu
  • Zhen Dong
  • Qingsong Wang
چکیده

Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimode Hybrid Geometric Calibration of Spaceborne SAR Considering Atmospheric Propagation Delay

The atmospheric propagation delay of radar signals is a systematic error that occurs in the atmospheric environment, and is a key issue in the high-precision geometric calibration of spaceborne SAR. A multimode hybrid geometric calibration method for spaceborne SAR that considers the atmospheric propagation delay is proposed in this paper. Error sources that affect the accuracy of the geometric...

متن کامل

Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still diffic...

متن کامل

Using an Imperialistic Competitive Algorithm in Global Polynomials Optimization (Case Study: 2D Geometric Correction of IKONOS and SPOT Imagery)

The number of high resolution space imageries in photogrammetry and remote sensing society is growing fast. Although these images provide rich data, the lack of sensor calibration information and ephemeris data does not allow the users to apply precise physical models to establish the functional relationship between image space and object space. As an alternative solution, some generalized mode...

متن کامل

Performance Analysis for Bistatic Interferometric SAR Configurations

The results of an interferometric performance analysis for spaceborne parasitic SAR configurations are presented. The analysis includes errors due to limited SNR, block adaptive quantization, range and azimuth ambiguities, and geometric decorrelation for both flat surfaces and random volumes. Relative height accuracies for three spaceborne configurations with PALSAR, ASAR and TerraSAR-X as illu...

متن کامل

Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes

AbstructThis paper presents a generalized formulation of the extended chirp scaling (ECS) approach for high precision processing of airand spaceborne SAR data. Based on the original chirp scaling function, the ECS algorithm incorporates a new azimuth scaling function and a subaperture approach, which allow an effective phase-preserving processing of ScanSAR data without interpolation for azimut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016