Development of a Cost-Effective Method for Capripoxvirus Genotyping Using Snapback Primer and dsDNA Intercalating Dye
نویسندگان
چکیده
Sheep pox virus (SPPV), goat pox virus (GTPV) and lumpy skin disease virus (LSDV) are very closely related viruses of the Capripoxvirus (CaPV) genus of the Poxviridae family. They are responsible for sheep pox, goat pox and lumpy skin disease which affect sheep, goat and cattle, respectively. The epidemiology of capripox diseases is complex, as some CaPVs are not strictly host-specific. Additionally, the three forms of the disease co-exist in many sub-Saharan countries which complicates the identification of the virus responsible for an outbreak. Genotyping of CaPVs using a low-cost, rapid, highly specific, and easy to perform method allows a swift and accurate identification of the causative agent and significantly assists in selecting appropriate control and eradication measures, such as the most suitable vaccine against the virus during the outbreaks. The objective of this paper is to describe the design and analytical performances of a new molecular assay for CaPV genotyping using unlabelled snapback primers in the presence of dsDNA intercalating EvaGreen dye. This assay was able to simultaneously detect and genotype CaPVs in 63 samples with a sensitivity and specificity of 100%. The genotyping was achieved by observing the melting temperature of snapback stems of the hairpins and those of the full-length amplicons, respectively. Fourteen CaPVs were genotyped as SPPVs, 25 as GTPVs and 24 as LSDVs. The method is highly pathogen specific and cross platform compatible. It is also cost effective as it does not use fluorescently labelled probes, nor require high-resolution melting curve analysis software. Thus it can be easily performed in diagnostic and research laboratories with limited resources. This genotyping method will contribute significantly to the early detection and genotyping of CaPV infection and to epidemiological studies.
منابع مشابه
Snapback primer genotyping of the Gilbert syndrome UGT1A1 (TA)(n) promoter polymorphism by high-resolution melting.
BACKGROUND Gilbert syndrome, a chronic nonhemolytic unconjugated hyperbilirubinemia, is associated with thymine-adenine (TA) insertions in the UGT1A1 (UDP glucuronosyltransferase 1 family, polypeptide A1) promoter. The UGT1A1 promoter genotype also correlates with toxicity induced by the chemotherapeutic drug irinotecan. Current closed-tube assays for genotyping the UGT1A1 (TA)(n) promoter poly...
متن کاملSnapback primer genotyping with saturating DNA dye and melting analysis.
BACKGROUND DNA hairpins have been used in molecular analysis of PCR products as self-probing amplicons. Either physical separation or fluorescent oligonucleotides with covalent modifications were previously necessary. METHODS We performed asymmetric PCR for 40-45 cycles in the presence of the saturating DNA dye, LCGreen Plus, with 1 primer including a 5' tail complementary to its extension pr...
متن کاملA novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance
Poxviruses belonging to the Orthopoxvirus, Capripoxvirus and Parapoxvirus genera share common host species and create a challenge for diagnosis. Here, we developed a novel multiplex PCR method for the simultaneous detection and differentiation of eight poxviruses, belonging to three genera: cowpox virus (CPXV) and camelpox virus (CMLV) [genus Orthopoxvirus]; goatpox virus (GTPV), sheeppox virus...
متن کاملA new approach to SNP genotyping with ̄uorescently labeled mononucleotides
Fluorescence resonance energy transfer (FRET) is one of the most powerful and promising tools for single nucleotide polymorphism (SNP) genotyping. However, the present methods using FRET require expensive reagents such as ̄uorescently labeled oligonucleotides. Here, we describe a novel and cost-effective method for SNP genotyping using FRET. The technique is based on allele-speci®c primer exten...
متن کاملSymmetric snapback primers for scanning and genotyping of the cystic fibrosis transmembrane conductance regulator gene.
BACKGROUND High-resolution melting of PCR products is an efficient and analytically sensitive method to scan for sequence variation, but detected variants must still be identified. Snapback primer genotyping uses a 5' primer tail complementary to its own extension product to genotype the resulting hairpin via melting. If the 2 methods were combined to analyze the same PCR product, the residual ...
متن کامل