Large-Scale Gaussian Process Regression via Doubly Stochastic Gradient Descent

نویسندگان

  • Xinyan Yan
  • Bo Xie
  • Le Song
  • Byron Boots
چکیده

Gaussian process regression (GPR) is a popular tool for nonlinear function approximation. Unfortunately, GPR can be difficult to use in practice due to the O(n) memory and O(n) processing requirements for n training data points. We propose a novel approach to scaling up GPR to handle large datasets using the recent concept of doubly stochastic functional gradients. Our approach relies on the fact that GPR can be expressed as a convex optimization problem that can be solved by making two unbiased stochastic approximations to the functional gradient, one using random training points and another using random features, and then descending using this noisy functional gradient. The effectiveness of the resulting algorithm is evaluated on the wellknown problem of learning the inverse dynamics of a robot manipulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly Stochastic Variational Bayes for non-Conjugate Inference

We propose a simple and effective variational inference algorithm based on stochastic optimisation that can be widely applied for Bayesian non-conjugate inference in continuous parameter spaces. This algorithm is based on stochastic approximation and allows for efficient use of gradient information from the model joint density. We demonstrate these properties using illustrative examples as well...

متن کامل

Comparison of Modern Stochastic Optimization Algorithms

Gradient-based optimization methods are popular in machine learning applications. In large-scale problems, stochastic methods are preferred due to their good scaling properties. In this project, we compare the performance of four gradient-based methods; gradient descent, stochastic gradient descent, semi-stochastic gradient descent and stochastic average gradient. We consider logistic regressio...

متن کامل

Scalable Bayesian Inference via Particle Mirror Descent

Bayesian methods are appealing in their flexibility in modeling complex data and ability in capturing uncertainty in parameters. However, when Bayes’ rule does not result in tractable closed-form, most approximate inference algorithms lack either scalability or rigorous guarantees. To tackle this challenge, we propose a simple yet provable algorithm, Particle Mirror Descent (PMD), to iterativel...

متن کامل

Matrix Eigen-decomposition via Doubly Stochastic Riemannian Optimization

Matrix eigen-decomposition is a classic and long-standing problem that plays a fundamental role in scientific computing and machine learning. Despite some existing algorithms for this inherently non-convex problem, the study remains inadequate for the need of large data nowadays. To address this gap, we propose a Doubly Stochastic Riemannian Gradient EIGenSolver, DSRG-EIGS, where the double sto...

متن کامل

Variational Inference for Gaussian Process Models with Linear Complexity

Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015