Generating survival times to simulate Cox proportional hazards models with time-varying covariates
نویسنده
چکیده
Simulation studies present an important statistical tool to investigate the performance, properties and adequacy of statistical models in pre-specified situations. One of the most important statistical models in medical research is the proportional hazards model of Cox. In this paper, techniques to generate survival times for simulation studies regarding Cox proportional hazards models are presented. A general formula describing the relation between the hazard and the corresponding survival time of the Cox model is derived, which is useful in simulation studies. It is shown how the exponential, the Weibull and the Gompertz distribution can be applied to generate appropriate survival times for simulation studies. Additionally, the general relation between hazard and survival time can be used to develop own distributions for special situations and to handle flexibly parameterized proportional hazards models. The use of distributions other than the exponential distribution is indispensable to investigate the characteristics of the Cox proportional hazards model, especially in non-standard situations, where the partial likelihood depends on the baseline hazard. A simulation study investigating the effect of measurement errors in the German Uranium Miners Cohort Study is considered to illustrate the proposed simulation techniques and to emphasize the importance of a careful modelling of the baseline hazard in Cox models.
منابع مشابه
Generating Survival Times to Simulate Cox Proportional Hazards Models
Number of words: 2795 (excluding summary, references and tables) 2 SUMMARY This paper discusses techniques to generate survival times for simulation studies regarding Cox proportional hazards models. In linear regression models, the response variable is directly connected with the considered covariates, the regression coefficients and the simulated random errors. Thus, the response variable can...
متن کاملاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملThe evaluation of Cox and Weibull proportional hazards models and their applications to identify factors influencing survival time in acute leukem
Introduction: The most important models used in analysis of survival data is proportional hazards models. Applying this model requires establishment of the relevance proportional hazards assumption, otherwise it world lead to incorrect inference. This study aims to evaluate Cox and Weibull models which are used in identification of effective factors on survival time in acute leukemia. Me...
متن کاملبرآورد خطای پیش بینی برای وضعیت بقا و کاربرد آن درتحلیل بقای بیماران مبتلا به سرطان روده بزرگ
Introduction: Colorectal cancer is one of the most widespread and killer among cancers. It is important that we predict what status people have in the future. The purpose of this study was comparison of the Cox model and Kaplan-Meier curve with IBS and also identifying the factors about predicted survival time of patients with colon cancer. Materials & Methods: This paper is related to colore...
متن کاملA mixed model approach for structured hazard regression
The classical Cox proportional hazards model is a benchmark approach to analyze continuous survival times in the presence of covariate information. In a number of applications, there is a need to relax one or more of its inherent assumptions, such as linearity of the predictor or the proportional hazards property. Also, one is often interested in jointly estimating the baseline hazard together ...
متن کامل