Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation.
نویسندگان
چکیده
Multicolor nonlinear microscopy of living tissue using two- and three-photon-excited intrinsic fluorescence combined with second harmonic generation by supermolecular structures produces images with the resolution and detail of standard histology without the use of exogenous stains. Imaging of intrinsic indicators within tissue, such as nicotinamide adenine dinucleotide, retinol, indoleamines, and collagen provides crucial information for physiology and pathology. The efficient application of multiphoton microscopy to intrinsic imaging requires knowledge of the nonlinear optical properties of specific cell and tissue components. Here we compile and demonstrate applications involving a range of intrinsic molecules and molecular assemblies that enable direct visualization of tissue morphology, cell metabolism, and disease states such as Alzheimer's disease and cancer.
منابع مشابه
Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy.
The microstructural basis for the mechanical properties of blood vessels has not been directly determined because of the lack of a nondestructive method that yields a three-dimensional view of these vascular wall constituents. Here, we demonstrate that multiphoton microscopy can be used to visualize the microstructural basis of blood vessel mechanical properties, by combining mechanical testing...
متن کاملIntrinsic Indicator of Photodamage during Label-Free Multiphoton Microscopy of Cells and Tissues
Multiphoton imaging has evolved as an indispensable tool in cell biology and holds prospects for clinical applications. When addressing endogenous signals such as coherent anti-Stokes Raman scattering (CARS) or second harmonic generation, it requires intense laser irradiation that may cause photodamage. We report that increasing endogenous fluorescence signal upon multiphoton imaging constitute...
متن کاملApplications of combined spectral lifetime microscopy for biology.
Live cell imaging has been greatly advanced by the recent development of new fluorescence microscopy-based methods such as multiphoton laser-scanning microscopy, which can noninvasively image deep into live specimens and generate images of extrinsic and intrinsic signals. Of recent interest has been the development of techniques that can harness properties of fluorescence, other than intensity,...
متن کاملDeveloping compact multiphoton systems using femtosecond fiber lasers.
We implement a fiber-delivered compact femtosecond fiber laser at 1,030-nm wavelength in multiphoton imaging. The laser pulse duration is 150 fs, the average power is 200 mW, and the repetition rate is 40 MHz. The laser measures 200 x 160 x 45 mm in size and its output is delivered through a photonic bandgap fiber. Intrinsic second-harmonic generation signal is excited from rat tail tendon and ...
متن کاملImaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model.
Laser thermal injury and subsequent wound healing in organotypic, skin-equivalent tissue models were monitored using optical coherence tomography (OCT), multiphoton microscopy (MPM), and histopathology. The in vitro skin-equivalent raft tissue model was composed of dermis with type I collagen and fibroblast cells and epidermis of differentiated keratinocytes. Noninvasive optical imaging techniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 12 شماره
صفحات -
تاریخ انتشار 2003