Quantum phase transition and underscreened Kondo effect in electron transport through parallel double quantum dots.
نویسندگان
چکیده
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction and capacitive interdot coupling. By applying the numerical renormalization group (NRG) method, the ground state of the system and the transmission probability at zero temperature have been obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e(2)/h) due to the underscreened Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to antiferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملDynamical symmetries and quantum transport through nanostructures
We discuss the manifestation of dynamical symmetries in quantum transport through nanostructures. The dynamical symmetry SO(4) manifested in the singlet-triplet excitations is shown to be responsible for several exotic effects in nano-devices: non-equilibrium Kondo effect in T-shape Double Quantum Dots, phonon-induced Kondo effect in transition-metal-organic complexes, Kondo shuttling in Nano-E...
متن کاملسیستمهای ناکام و همبسته الکترونی
Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the hig...
متن کاملElectron Transport through Double Quantum Dot: from SU(4) Kondo to SU(2) Symmetry
Electron transport across two capacitively coupled quantum dots in a parallel geometry is theoretically studied in the non-linear response regime with spin and orbital degrees of freedom taken into account and the Kondo effect induced by on-site and inter-dot Coulomb correlations is analyzed. For a system with each dot symmetrically coupled to a separate set of electrodes a well-defined spin an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 21 45 شماره
صفحات -
تاریخ انتشار 2009